Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reproduction ; 166(6): 459-471, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855440

RESUMO

In brief: The SCN regulates ovulation by stimulating the preovulatory surge of gonadotropins. This study revealed an additional role in the sensitization of the hypothalamus to estradiol that changes along the estrous cycle and the side of the nucleus. Abstract: Ovulation is timed by neural signals originating at the suprachiasmatic nucleus (SCN) that trigger ovulation when converge with high estradiol levels, which indicates the maturation of ovarian follicles. We have shown that the hypothalamic regulation of ovulation is asymmetrical and we hypothesized that the paired SCN could contribute to such symmetries. We unilaterally lesioned the SCN of rats at each stage of the estrous cycle and evaluated the acute effects on the progression of their estrous cycle, follicular development and ovulation. Lesions prevented progression of the estrous cycle when performed in estrus/metestrus but not in diestrus/proestrus. Abnormalities in follicular development were observed in the nonovulating lesioned rats and this was independent of the side of the SCN destroyed and the stage of the cycle when surgery was performed. Groups of lesioned rats were then hormonally primed with GnRH or estradiol to assess the neuroendocrine pathway altered by the treatment. GnRH restored ovulation, suggesting that both SCN are needed for proper triggering of the preovulatory surge of GnRH and that unilateral lesion does not impair the sensitivity of the pituitary or the ovary to GnRH and gonadotropins, respectively. With regard to restoring ovulation, estradiol was asymmetrically effective in rats lesioned in estrous, partially effective in rats operated at diestrus and ineffective in rats at metestrus. Our results indicate that the SCN regulates the activity of the hypothalamic-pituitary-ovarian axis not only by modulating the preovulatory surge of GnRH/gonadotropins but also by promoting the hypothalamic integration of estrogenic signals from the ovaries in an asymmetric and stage-dependent fashion.


Assuntos
Estradiol , Ciclo Estral , Feminino , Ratos , Animais , Estradiol/farmacologia , Retroalimentação , Núcleo Supraquiasmático/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Ovulação , Gonadotropinas/farmacologia
2.
Exp Physiol ; 105(2): 258-269, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769118

RESUMO

NEW FINDINGS: What is the central question of this study? Is the suprachiasmatic nucleus the structure that generates the neural circadian signals that occur during every stage of the oestrous cycle, not only pro-oestrus, and are these signals essential for proper regulation of ovulation? What is the main finding and its importance? Transient inhibition of Na+ -dependent action potentials in the suprachiasmatic nucleus by tetrodotoxin microinjection at 14.00 h inhibits ovulation irrespective of the stage of the oestrous cycle at which the procedure is performed. Microinjection of saline solution into the suprachiasmatic nucleus has a disruptive effect on ovulation that depends on the stage of the cycle at which it is administered. ABSTRACT: Reproduction is a highly timed process that depends on both the reproductive and circadian systems. The core oscillator of the latter resides at the suprachiasmatic nuclei (SCN) and it is pivotal for the regulation of the pro-oestrus pre-ovulatory surge of gonadotropins in females. There is evidence to suggest that this system may be involved in the regulation of neuroendocrine events that are essential for ovulation and that occur prior to pro-oestrus. We explored this possibility by transiently inactivating the SCN. Female rats were implanted with guide cannulas aimed at the SCN. After recovery of the oestrous cycle, animals were injected with tetrodotoxin (TTX), artificial cerebrospinal fluid (ACSF) or saline solution while freely moving. Injections were performed at 14.00 h of each stage of the oestrous cycle. Animals were killed on the next predicted oestrus day, the number of ova shed was counted and intact rats at oestrus stage were used as absolute control. ACSF did not modify ovulation. Saline solution blocked ovulation in oestrus- and dioestrus-injected rats. Irrespectively of the stage of the oestrous cycle, TTX blocked ovulation. These results lead us to suggest that a neural circadian signal, pivotal for triggering the gonadotropin pre-ovulatory surge, arises from the SCN during the critical window of pro-oestrus. We also suggest that a similar signal, needed for the regulation of other events that are indispensable for proper regulation of ovulation, is also generated in this nucleus during the other stages of the cycle at a similar time.


Assuntos
Ritmo Circadiano/fisiologia , Ciclo Estral/metabolismo , Ovulação/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Gonadotropina Coriônica/administração & dosagem , Ritmo Circadiano/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Feminino , Humanos , Microinjeções/métodos , Ovulação/efeitos dos fármacos , Ratos , Núcleo Supraquiasmático/efeitos dos fármacos , Tetrodotoxina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa