Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 8, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298683

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) are a newly appreciated class of RNAs that lack free 5' and 3' ends, are expressed by the thousands in diverse forms of life, and are mostly of enigmatic function. Ostensibly due to their resistance to exonucleases, circRNAs are known to be exceptionally stable. Previous work in Drosophila and mice have shown that circRNAs increase during aging in neural tissues. RESULTS: Here, we examined the global profile of circRNAs in C. elegans during aging by performing ribo-depleted total RNA-seq from the fourth larval stage (L4) through 10-day old adults. Using stringent bioinformatic criteria and experimental validation, we annotated a high-confidence set of 1166 circRNAs, including 575 newly discovered circRNAs. These circRNAs were derived from 797 genes with diverse functions, including genes involved in the determination of lifespan. A massive accumulation of circRNAs during aging was uncovered. Many hundreds of circRNAs were significantly increased among the aging time-points and increases of select circRNAs by over 40-fold during aging were quantified by RT-qPCR. The expression of 459 circRNAs was determined to be distinct from the expression of linear RNAs from the same host genes, demonstrating host gene independence of circRNA age-accumulation. CONCLUSIONS: We attribute the global scale of circRNA age-accumulation to the high composition of post-mitotic cells in adult C. elegans, coupled with the high resistance of circRNAs to decay. These findings suggest that the exceptional stability of circRNAs might explain age-accumulation trends observed from neural tissues of other organisms, which also have a high composition of post-mitotic cells. Given the suitability of C. elegans for aging research, it is now poised as an excellent model system to determine whether there are functional consequences of circRNA accumulation during aging.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , RNA/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Perfilação da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Circular , Análise de Sequência de RNA
2.
Yale J Biol Med ; 89(4): 527-537, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28018143

RESUMO

Many thousands of Circular RNAs (circRNAs) have recently been identified in metazoan genomes by transcriptome-wide sequencing. Most circRNAs are generated by back-splicing events from exons of protein-coding genes. A great deal of progress has recently been made in understanding the genome-wide expression patterns, biogenesis, and regulation of circRNAs. To date, however, few functions of circRNAs have been identified. CircRNAs are preferentially expressed in neural tissues and some are found at synapses, suggesting possible functions in the nervous system. Several circRNAs have been shown to function as microRNA "sponges" to counteract microRNA mediated repression of mRNA. New functions for circRNAs are arising, including protein sequestration, transcriptional regulation, and potential functions in cancer. Here, we highlight the recent progress made in understanding the biogenesis and regulation of circRNAs, discuss newly uncovered circRNA functions, and explain the methodological approaches that could reveal more exciting and unexpected roles for these RNAs.


Assuntos
RNA/genética , Processamento Alternativo/genética , Animais , Éxons/genética , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/genética , RNA Circular , RNA não Traduzido/genética
3.
STAR Protoc ; 5(2): 102966, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512867

RESUMO

Studying RNA splicing factor mutations is challenging due to difficulties in distinguishing wild-type and mutant cells within complex human tissues and inaccuracies associated with reconstructing splicing signals from short-read sequencing data. Here, we present Genotyping of Transcriptomes (GoT)-Splice, a protocol that overcomes these limitations by combining GoT with enhanced long-read single-cell transcriptome and cell-surface proteomics profiling. We describe steps for long-read library preparation and analysis, followed by cDNA re-amplification, enrichment of mutation of interest, sample indexing, and GoT library preparation. For complete details on the use and execution of this protocol, please refer to Cortés-López et al.1.


Assuntos
Proteínas de Membrana , Mutação , Splicing de RNA , Humanos , Splicing de RNA/genética , Mutação/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Proteômica/métodos , Biblioteca Gênica , Análise de Célula Única/métodos , Multiômica
4.
Oncoimmunology ; 12(1): 2184143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875548

RESUMO

Despite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms.


Assuntos
Antígenos CD19 , Ribonucleoproteínas Nucleares Heterogêneas , Leucemia de Células B , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteínas de Ligação a RNA , Humanos , Sítios de Ligação , Epitopos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/genética , Leucemia de Células B/genética
5.
Cell Stem Cell ; 30(12): 1658-1673.e10, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065069

RESUMO

Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Hematopoéticas , Inflamação , Metilação de RNA , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Metilação de RNA/genética
6.
Cell Stem Cell ; 30(9): 1262-1281.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582363

RESUMO

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.


Assuntos
Síndromes Mielodisplásicas , Sítios de Splice de RNA , Humanos , Multiômica , Splicing de RNA/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
7.
Nat Commun ; 13(1): 5570, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138008

RESUMO

Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Sítios de Splice de RNA , Processamento Alternativo/genética , Antígenos CD19/genética , Antígenos CD19/metabolismo , Epitopos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Mutagênese/genética , Mutação , Recidiva Local de Neoplasia/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Isoformas de Proteínas/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Genome Biol ; 22(1): 190, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183059

RESUMO

Resistance to CD19-directed immunotherapies in lymphoblastic leukemia has been attributed, among other factors, to several aberrant CD19 pre-mRNA splicing events, including recently reported excision of a cryptic intron embedded within CD19 exon 2. While "exitrons" are known to exist in hundreds of human transcripts, we discovered, using reporter assays and direct long-read RNA sequencing (dRNA-seq), that the CD19 exitron is an artifact of reverse transcription. Extending our analysis to publicly available datasets, we identified dozens of questionable exitrons, dubbed "falsitrons," that appear only in cDNA-seq, but never in dRNA-seq. Our results highlight the importance of dRNA-seq for transcript isoform validation.


Assuntos
Processamento Alternativo , Artefatos , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/genética , Transcrição Reversa , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Pareamento de Bases , Sequência de Bases , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia/métodos , Íntrons , Modelos Biológicos , Conformação de Ácido Nucleico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Mensageiro/química , RNA Mensageiro/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
9.
Methods Mol Biol ; 1724: 27-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29322438

RESUMO

The genome-wide expression patterns of circular RNAs (circRNAs) are of increasing interest for their potential roles in normal cellular homeostasis, development, and disease. Thousands of circRNAs have been annotated from various species in recent years. Analysis of publically available or user-generated rRNA-depleted total RNA-seq data can be performed to uncover new circRNA expression trends. Here we provide a primer for profiling circRNAs from RNA-seq datasets. The description is tailored for the wet lab scientist with limited or no experience in analyzing RNA-seq data. We begin by describing how to access and interpret circRNA annotations. Next, we cover converting circRNA annotations into junction sequences that are used as scaffolds to align RNA-seq reads. Lastly, we visit quantifying circRNA expression trends from the alignment data.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Humanos , RNA Circular
10.
Nat Commun ; 9(1): 3315, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120239

RESUMO

Mutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON∆165. Importantly, the effects correlate with RON alternative splicing in cancer patients bearing the same mutations. Moreover, we highlight heterogeneous nuclear ribonucleoprotein H (HNRNPH) as a key regulator of RON splicing in healthy tissues and cancer. Using iCLIP and synergy analysis, we pinpoint the functionally most relevant HNRNPH binding sites and demonstrate how cooperative HNRNPH binding facilitates a splicing switch of RON exon 11. Our results thereby offer insights into splicing regulation and the impact of mutations on alternative splicing in cancer.


Assuntos
Processamento Alternativo/genética , Mutagênese/genética , Neoplasias/genética , Receptores Proteína Tirosina Quinases/genética , Sequência de Bases , Sítios de Ligação , Éxons/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Íntrons/genética , Modelos Lineares , Células MCF-7 , Mutação/genética , Proto-Oncogene Mas , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de RNA
11.
Elife ; 62017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583253

RESUMO

Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.


Assuntos
Envelhecimento/patologia , Músculo Esquelético/patologia , Junção Neuromuscular/patologia , Sarcopenia/patologia , Células-Tronco/fisiologia , Animais , Camundongos
12.
Sci Rep ; 6: 38907, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958329

RESUMO

Circular RNAs (circRNAs) are a newly appreciated class of RNAs expressed across diverse phyla. These enigmatic transcripts are most commonly generated by back-splicing events from exons of protein-coding genes. This results in highly stable RNAs due to the lack of free 5' and 3' ends. CircRNAs are enriched in neural tissues, suggesting that they might have neural functions. Here, we sought to determine whether circRNA accumulation occurs during aging in mice. Total RNA-seq profiling of young (1 month old) and aged (22 month old) cortex, hippocampus and heart samples was performed. This led to the confident detection of 6,791 distinct circRNAs across these samples, including 675 novel circRNAs. Analysis uncovered a strong bias for circRNA upregulation during aging in neural tissues. These age-accumulation trends were verified for individual circRNAs by RT-qPCR and Northern analysis. In contrast, comparison of aged versus young hearts failed to reveal a global trend for circRNA upregulation. Age-accumulation of circRNAs in brain tissues was found to be largely independent from linear RNA expression of host genes. These findings suggest that circRNAs might play biological roles relevant to the aging nervous system.


Assuntos
Envelhecimento , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Miocárdio/metabolismo , RNA/metabolismo , Animais , Éxons , Expressão Gênica , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa