Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860399

RESUMO

Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.


Assuntos
Peixes , Sono , Animais , Sono/fisiologia , Peixes/fisiologia , Comportamento Animal/fisiologia , Meio Ambiente
2.
J Fish Biol ; 103(5): 974-984, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37386747

RESUMO

Although studies on fish cognition are increasing, consideration of how methodological details influence the ability to detect and measure performance is lagging. Here, in two separate experiments the authors compared latency to leave the start position, latency to make a decision, levels of participation and success rates (whether fish entered the rewarded chamber as first choice) across different physical designs. Experiments compared fish performance across (a) two sizes of T-mazes, large and standard, and a plus-maze, and (b) open choice arenas with either two or four doors. Fish in T-mazes with longer arms took longer to leave the start chamber and were less likely to participate in a trial than fish in T-mazes with shorter arms. The number of options, or complexity, in a maze significantly impacted success but did not necessarily impact behavioural measures, and did not impact the number of fish that reached a chamber. Fish in the plus-maze had similar latencies to leave the start box and time to reach any chamber as fish in the same-sized T-maze but exhibited lower overall success. Similarly, in an open choice arena, increasing the number of options - doors to potential reward chambers - resulted in lower probability of success. There was an influence of reward position in the choice arena, with rewarded chambers closest to the sides of the arena resulting in lower latencies to enter and higher probability of decision success. Together the results allow the authors to offer practical suggestions towards optimal maze design for studies of fish cognition.


Assuntos
Cognição , Peixes , Animais , Aprendizagem em Labirinto
3.
Proc Biol Sci ; 288(1952): 20210454, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102892

RESUMO

Artificial light at night (ALAN) is an increasing anthropogenic pollutant, closely associated with human population density, and now well recognized in both terrestrial and aquatic environments. However, we have a relatively poor understanding of the effects of ALAN in the marine realm. Here, we carried out a field experiment in the coral reef lagoon of Moorea, French Polynesia, to investigate the effects of long-term exposure (18-23 months) to chronic light pollution at night on the survival and growth of wild juvenile orange-fin anemonefish, Amphiprion chrysopterus. Long-term exposure to environmentally relevant underwater illuminance (mean: 4.3 lux), reduced survival (mean: 36%) and growth (mean: 44%) of juvenile anemonefish compared to that of juveniles exposed to natural moonlight underwater (mean: 0.03 lux). Our study carried out in an ecologically realistic situation in which the direct effects of artificial lighting on juvenile anemonefish are combined with the indirect consequences of artificial lighting on other species, such as their competitors, predators, and prey, revealed the negative impacts of ALAN on life-history traits. Not only are there immediate impacts of ALAN on mortality, but the decreased growth of surviving individuals may also have considerable fitness consequences later in life. Future studies examining the mechanisms behind these findings are vital to understand how organisms can cope and survive in nature under this globally increasing pollutant.


Assuntos
Recifes de Corais , Luz , Animais , Peixes , Humanos , Iluminação/efeitos adversos , Polinésia
4.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520540

RESUMO

Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.


Assuntos
Consumo de Oxigênio , Oxigênio , Animais , Metabolismo Basal , Temperatura
5.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643214

RESUMO

Increased ocean temperatures are causing mass bleaching of anemones and corals in the tropics worldwide. While such heat-induced loss of algal symbionts (zooxanthellae) directly affects anemones and corals physiologically, this damage may also cascade on to other animal symbionts. Metabolic rate is an integrative physiological trait shown to relate to various aspects of organismal performance, behaviour and locomotor capacity, and also shows plasticity during exposure to acute and chronic stressors. As climate warming is expected to affect the physiology, behaviour and life history of animals, including ectotherms such as fish, we measured if residing in bleached versus unbleached sea anemones (Heteractis magnifica) affected the standard (i.e. baseline) metabolic rate and behaviour (activity) of juvenile orange-fin anemonefish (Amphiprion chrysopterus). Metabolic rate was estimated from rates of oxygen uptake [Formula: see text], and the standard metabolic rate [Formula: see text] of anemonefish from bleached anemones was significantly higher by 8.2% compared with that of fish residing in unbleached anemones, possibly due to increased stress levels. Activity levels did not differ between fish from bleached and unbleached anemones. As [Formula: see text] reflects the minimum cost of living, the increased metabolic demands may contribute to the negative impacts of bleaching on important anemonefish life history and fitness traits observed previously (e.g. reduced spawning frequency and lower fecundity).


Assuntos
Perciformes/metabolismo , Anêmonas-do-Mar/fisiologia , Simbiose/fisiologia , Animais , Mudança Climática , Locomoção/fisiologia , Consumo de Oxigênio/fisiologia , Perciformes/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38941355

RESUMO

Group-living in animals comes with a number of benefits associated with predator avoidance, foraging, and reproduction. A large proportion of fish species display grouping behaviour. Fish may also be particularly vulnerable to climate-related stressors including thermal variation, hypoxia, and acidification. As climate-related stressors are expected to increase in magnitude and frequency, any effects on fish behaviour may be increased and affect the ability of fish species to cope with changing conditions. Here we conduct a systematic review of the effects of temperature, hypoxia, and acidification on individual sociability and group cohesion in shoaling and schooling fishes. Searches of the published and grey literature were carried out, and studies were included or excluded based on selection criteria. Data from studies were then included in a meta-analysis to examine broad patterns of effects of climate-related stressors in the literature. Evidence was found for a reduction in group cohesion at low oxygen levels, which was stronger in smaller groups. While several studies reported effects of temperature and acidification, there was no consistent effect of either stressor on sociability or cohesion. There was some evidence that marine fishes are more strongly negatively affected by acidification compared with freshwater species, but results are similarly inconsistent and more studies are required. Additional studies of two or more stressors in combination are also needed, although one study found reduced sociability following exposure to acidification and high temperatures. Overall, there is some evidence that hypoxia, and potentially other climate-related environmental changes, impact sociability and group cohesion in fishes. This may reduce survival and adaptability in shoaling and schooling species and have further ecological implications for aquatic systems. However, this synthesis mainly highlights the need for more empirical studies examining the effects of climate-related factors on social behaviour in fishes.

7.
Conserv Physiol ; 12(1): coad105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293637

RESUMO

Fishing causes direct removal of individuals from wild populations but can also cause a physiological disturbance in fish that are released or discarded after capture. While sublethal physiological effects of fish capture have been well studied in commercial and recreational fisheries, this issue has been overlooked for the ornamental fish trade, where it is common to capture fish from the wild and discard non-target species. We examined metabolic responses to capture and discard procedures in the three-striped dwarf cichlid Apistogramma trifasciata, a popular Amazonian aquarium species that nonetheless may be discarded when not a target species. Individuals (n = 34) were tagged and exposed to each of four treatments designed to simulate procedures during the capture and discard process: 1) a non-handling control; 2) netting; 3) netting +30 seconds of air exposure; and 4) netting +60 seconds of air exposure. Metabolic rates were estimated using intermittent-flow respirometry, immediately following each treatment then throughout recovery overnight. Increasing amounts of netting and air exposure caused an acute increase in oxygen uptake and decrease in available aerobic scope. In general, recovery occurred quickly, with rapid decreases in oxygen uptake within the first 30 minutes post-handling. Notably, however, male fish exposed to netting +60 seconds of air exposure showed a delayed response whereby available aerobic scope was constrained <75% of maximum until ~4-6 hours post-stress. Larger fish showed a greater initial increase in oxygen uptake post-stress and slower rates of recovery. The results suggest that in the period following discard, this species may experience a reduced aerobic capacity for additional behavioural/physiological responses including feeding, territory defence and predator avoidance. These results are among the first to examine impacts of discard practises in the ornamental fishery and suggest ecophysiological research can provide valuable insight towards increasing sustainable practises in this global trade.

8.
Front Physiol ; 12: 754719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858209

RESUMO

As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients-known as physiological performance curves-may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa