Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791228

RESUMO

Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.


Assuntos
Ácido Clorogênico , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062873

RESUMO

Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.


Assuntos
Ácidos Cafeicos , Neoplasias , Humanos , Ácidos Cafeicos/uso terapêutico , Ácidos Cafeicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Antineoplásicos/uso terapêutico
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361785

RESUMO

Fungal biotransformation is an attractive synthetic strategy to produce highly specific compounds with chemical functionality in regions of the carbon skeleton that are not easily activated by conventional organic chemistry methods. In this work, Cladosporium antarcticum isolated from sediments of Glacier Collins in Antarctica was used to obtain novel drimane sesquiterpenoids alcohols with activity against Candida yeast from drimendiol and epidrimendiol. These compounds were produced by the high-yield reduction of polygodial and isotadeonal with NaBH4 in methanol. Cladosporium antarcticum produced two major products from drimendiol, identified as 9α-hydroxydrimendiol (1, 41.4 mg, 19.4% yield) and 3ß-hydroxydrimendiol (2, 74.8 mg, 35% yield), whereas the biotransformation of epidrimendiol yielded only one product, 9ß-hydroxyepidrimendiol (3, 86.6 mg, 41.6% yield). The products were purified by column chromatography and their structure elucidated by NMR and MS. The antifungal activity of compounds 1-3 was analyzed against Candida albicans, C. krusei and C. parapsilosis, showing that compound 2 has a MIC lower than 15 µg/mL against the three-pathogenic yeast. In silico studies suggest that a possible mechanism of action for the novel compounds is the inhibition of the enzyme lanosterol 14α-demethylase, affecting the ergosterol synthesis.


Assuntos
Álcoois , Sesquiterpenos , Álcoois/metabolismo , Candida , Antifúngicos/química , Sesquiterpenos/química , Candida albicans , Biotransformação , Testes de Sensibilidade Microbiana
4.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233069

RESUMO

Drimys winteri J.R. (Winteraceae) produce drimane sesquiterpenoids with activity against Candida yeast. In this work, drimenol, polygodial (1), isotadeonal (2), and a new drimane α,ß-unsaturated 1,4-dialdehyde, named winterdial (4), were purified from barks of D. winteri. The oxidation of drimenol produced the monoaldehyde drimenal (3). These four aldehyde sesquiterpenoids were evaluated against six Candida species isolated from candidemia patients in Chilean hospitals. Results showed that 1 displays fungistatic activity against all yeasts (3.75 to 15.0 µg/mL), but irritant effects on eyes and skin, whereas its non-pungent epimer 2 has fungistatic and fungicide activities at 1.9 and 15.0 µg/mL, respectively. On the other hand, compounds 3 and 4 were less active. Molecular dynamics simulations suggested that compounds 1-4 are capable of binding to the catalytic pocket of lanosterol 14-alpha demethylase with similar binding free energies, thus suggesting a potential mechanism of action through the inhibition of ergosterol synthesis. According to our findings, compound 2 appears as a valuable molecular scaffold to pursue the future development of more potent drugs against candidiasis with fewer side effects than polygodial. These outcomes are significant to broaden the alternatives to treat fungal infections with increasing prevalence worldwide using natural compounds as a primary source for active compounds.


Assuntos
Candidemia , Fungicidas Industriais , Sesquiterpenos , Aldeídos/farmacologia , Candida , Chile , Ergosterol , Humanos , Irritantes , Lanosterol , Sesquiterpenos Policíclicos , Sesquiterpenos/química
5.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062581

RESUMO

Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.


Assuntos
Cinamatos , Depsídeos , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Ácido Rosmarínico , Depsídeos/farmacologia , Depsídeos/química , Depsídeos/uso terapêutico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Cinamatos/química , Humanos , Neoplasias/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa