Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(2): 323-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37403286

RESUMO

9H- and 7H-2,6-Diaminopurine (26DAP) photoinduced events in vacuum were studied at the MS-CASPT2/cc-pVDZ level of theory. The S1 1 (ππ* La ) state is initially populated evolving barrierless towards its minimum energy structure, from where two photochemical events can take place in both tautomers. The first is the return of the electronic population to the ground state via the C6 conical intersection (CI-C6). The second involves an internal conversion to the ground through the C2 conical intersection (CI-C2). According to our geodesic interpolated paths connecting the critical structures, the second route is less favorable in both tautomers, due to the presence of high energy barriers. Our calculations suggest a competition between fluorescence and ultrafast relaxation to the electronic ground state via internal conversion process. Based on our calculated potential energy surfaces and experimental excited state lifetimes from the literature, we can infer that the 7H- must have a greater fluorescence yield than the 9H-tautomer. We also explored the triplet state population mechanisms on the 7H-26DAP to understand their long-lived components observed experimentally.

2.
J Phys Chem B ; 127(41): 8809-8824, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37796883

RESUMO

Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.


Assuntos
Sistema Enzimático do Citocromo P-450 , Peróxido de Hidrogênio , Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Catálise
3.
J Chem Theory Comput ; 19(18): 6484-6499, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37607344

RESUMO

Molecular photoswitches offer precise, reversible photocontrol over biomolecular functions and are promising light-regulated drug candidates with minimal side effects. Quantifying thermal isomerization rates of photoswitches in their target biomolecules is essential for fine-tuning their light-controlled drug activity. However, the effects of protein binding on isomerization kinetics remain poorly understood, and simulations are crucial for filling this gap. Challenges in the simulation include describing multireference electronic structures near transition states, disentangling competing reaction pathways, and sampling protein-ligand interactions. To overcome these challenges, we used multiscale simulations to characterize the thermal isomerization of photostatins (PSTs), which are light-regulated microtubule inhibitors for potential cancer phototherapy. We employed a new ab initio multireference electronic structure method in a quantum mechanics/molecular mechanics setting and combined it with enhanced sampling techniques to characterize the cis to trans free-energy profiles of three PSTs in a vacuum, aqueous solution, and tubulin dimer. The significant advantage of our novel approach is the efficient treatment of the multireference character in PSTs' electronic wavefunction throughout the conformational sampling of protein-ligand interactions along their isomerization pathways. We also benchmarked our calculations using high-level ab initio multireference electronic structure methods and explored the competing isomerization pathways. Notably, calculations in a vacuum and implicit solvent models cannot predict the order of the PSTs' thermal half-lives in the aqueous solution observed in the experiment. Only by explicitly treating the solvent molecules can the correct order of isomerization kinetics be reproduced. Protein binding perturbs free-energy barriers due to hydrogen bonding between PSTs and nearby polar residues. Our work generates comprehensive, high-quality benchmark data and offers guidance for selecting computational methods to study the thermal isomerization of photoswitches. Ab initio multireference free-energy calculations in explicit molecular environments are crucial for predicting the effects of substituents on the thermal half-lives of photoswitches in biological systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Isomerismo , Ligantes , Solventes/química , Água/química
4.
J Phys Chem B ; 127(51): 10987-10999, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096487

RESUMO

Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the n-heptane substrate catalyzed by Agrocybe aegerita UPO (AaeUPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in AaeUPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of AaeUPO, which will be instrumental in the rational design of UPOs with enhanced properties.


Assuntos
Hidrogênio , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Hidrogênio/química , Hidroxilação , Oxigênio
5.
Photochem Photobiol ; 99(2): 693-705, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35938218

RESUMO

The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art extended multi-state complete active space second-order perturbation theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10- to 30-fold slower relaxation (depending on solvent) compared with guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared with guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemically active to adjacent nucleobases than guanine or other nucleobases within DNA.


Assuntos
Guanina , Água , Solventes , Água/química , Propanóis
6.
J Chem Theory Comput ; 14(2): 843-855, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29316391

RESUMO

A study is presented on the resonance Raman (RR) spectrum based on fully anharmonic wave functions and energies obtained from ab initio multireference potential energy curves of diatomic systems. The vibrational problem is numerically solved using a variational stochastic method or the Cooley-Numerov method, as implemented in Le Roy's LEVEL program. Anharmonic Franck-Condon and Herzberg-Teller integrals are numerically evaluated, and the RR polarizability is calculated within the time-independent framework of the RR theory. At the harmonic level, the differential cross sections show faster convergence with respect to the number of intermediate vibrational states than what is obtained from anharmonic wave functions. Twice as many intermediate states are required to achieve the same convergence in the RR intensities as observed within the harmonic model. The anharmonic spectra evaluated for H2, C2, and O2 molecules show that RR intensities are strongly affected by anharmonic effects. They differ from their harmonic counterparts not only in the position of the peaks but also in the absolute and relative intensities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa