Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214383

RESUMO

There is much evidence pointing out eye movement alterations in several neurological diseases. To the best of our knowledge, this is the first video-oculography study describing potential alterations of eye movements in the post-COVID-19 condition. Visually guided saccades, memory-guided saccades, and antisaccades in horizontal axis were measured. In all visual tests, the stimulus was deployed with a gap condition. The duration of the test was between 5 and 7 min per participant. A group of n=9 patients with the post-COVID-19 condition was included in this study. Values were compared with a group (n=9) of healthy volunteers whom the SARS-CoV-2 virus had not infected. Features such as centripetal and centrifugal latencies, success rates in memory saccades, antisaccades, and blinks were computed. We found that patients with the post-COVID-19 condition had eye movement alterations mainly in centripetal latency in visually guided saccades, the success rate in memory-guided saccade test, latency in antisaccades, and its standard deviation, which suggests the involvement of frontoparietal networks. Further work is required to understand these eye movements' alterations and their functional consequences.


Assuntos
COVID-19 , Movimentos Oculares , Piscadela , Humanos , SARS-CoV-2 , Movimentos Sacádicos
2.
Diabetes Metab Syndr Obes ; 13: 3117-3135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982345

RESUMO

INTRODUCTION: Oxidative stress and exacerbated generation of advanced glycation end products (AGEs) participate in the onset of diabetic complications. Lycopene is a potent antioxidant; evidence accounts for its ability to mitigate diabetic disturbances, including the deleterious events of advanced glycation. Therefore, this carotenoid has emerged as a candidate to be used in combination with antidiabetic drugs, such as metformin, attempting to counteract the glycoxidative stress. This study investigated the effects of the treatments with lycopene or metformin, alone or in combination, on glycoxidative stress biomarkers and antioxidant defenses in diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated for 35 days with lycopene (45 mg/kg) or metformin (250 mg/kg), alone or as mixtures in yoghurt. Plasma levels of glucose, triglycerides, cholesterol, thiobarbituric acid reactive substances and protein carbonyl groups (biomarkers of oxidative damage), fluorescent AGEs (biomarkers of advanced glycation), and paraoxonase 1 activity (antioxidant enzyme) were assessed. Changes in the hepatic and renal levels of glycoxidative damage biomarkers and the activities of antioxidant enzymes were investigated. RESULTS: The combination of lycopene with metformin maintained the beneficial effects of the isolated treatments, improving the glucose tolerance and lipid profile, lessening biomarkers of oxidative damage, and increasing the paraoxonase 1 activity. Besides, the combined therapy caused further decreases in postprandial glycemia, plasma levels of cholesterol and AGEs, avoided lipid peroxidation (plasma, kidney), and increased antioxidant defenses, mainly the activity of superoxide dismutase (liver, kidney), indicating the maintenance of the lycopene effects. CONCLUSION: Lycopene combined with metformin may act synergistically in the control of postprandial glycemia, dyslipidemia and glycoxidative stress, as well as increased antioxidant defenses, arising as a promising therapeutic strategy to mitigate diabetic complications.

3.
Life Sci ; 258: 118196, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763295

RESUMO

AIM: The pharmacological properties of pentoxifylline have been re-evaluated, particularly in chronic kidney disease in diabetes, favored by its anti-inflammatory action. Definitive evidences of renal outcomes are lacking, which indicates the need for investigation of novel mechanisms of action of pentoxifylline. We postulated that components associated with the metabolism of advanced glycation end products (AGEs) may be modulated by pentoxifylline, which consequently decreases the detrimental effects of obesity on kidneys. MAIN METHODS: C57BL-6J mice were fed a high-fat diet for 14 weeks and treated with 50 mg/kg pentoxifylline during the last 7 weeks. Changes in the renal levels of AGE metabolism-associated components were investigated, with particular focus on the receptor for AGEs (RAGE), its downstream components, and components related to AGE detoxification, including glyoxalase 1 (GLO 1). KEY FINDINGS: Pentoxifylline reduced body weight gain, improved insulin sensitivity and glucose tolerance, downregulated biomarkers of glycoxidative stress, and enhanced plasma paraoxonase 1 activity. In the kidneys, pentoxifylline inhibited glomerular expansion, lipid deposition, reduced pro-inflammatory cytokine levels, and induced the activation of AMP-activated protein kinase. Pentoxifylline inhibited the renal accumulation of AGEs and reduced the levels of RAGE and its downstream components, and consequently mitigated oxidative stress and apoptosis. Pentoxifylline also increased the renal levels of GLO 1 and the activities of antioxidant enzymes. Urinary albumin levels were observed to be lowered, which reconfirmed the antialbuminuric effects of pentoxifylline. SIGNIFICANCE: The novel mechanisms of action help explain the renoprotective effects of pentoxifylline and the attenuation of obesity-associated renal complications related to glycoxidative stress.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Glicólise/efeitos dos fármacos , Rim/patologia , Lactoilglutationa Liase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pentoxifilina/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Rim/efeitos dos fármacos , Camundongos Obesos , Transdução de Sinais/efeitos dos fármacos
4.
Oxid Med Cell Longev ; 2020: 1036360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566072

RESUMO

Both oxidative stress and the exacerbated generation of advanced glycation end products (AGEs) have crucial roles in the onset and progression of diabetic complications. Curcumin has antioxidant and antidiabetic properties; its combination with compounds capable of preventing the advanced glycation events, such as aminoguanidine, is an interesting therapeutic option to counteract diabetic complications. This study is aimed at investigating the effects of treatments with curcumin or aminoguanidine, alone or in combination, on metabolic alterations in streptozotocin-diabetic rats; the focus was mainly on the potential of these bioactive compounds to oppose the glycoxidative stress. Curcumin (90 mg/kg) or aminoguanidine (50 and 100 mg/kg), alone or in combination, slightly decreased glycemia and the biomarkers of early protein glycation, but markedly decreased AGE levels (biomarkers of advanced glycation) and oxidative damage biomarkers in the plasma, liver, and kidney of diabetic rats. Some novel insights about the in vivo effects of these bioactive compounds are centered on the triggering of cytoprotective machinery. The treatments with curcumin and/or aminoguanidine increased the activities of the antioxidant enzymes (paraoxonase 1, superoxide dismutase, and catalase) and the levels of AGE detoxification system components (AGE-R1 receptor and glyoxalase 1). In addition, combination therapy between curcumin and aminoguanidine effectively prevented dyslipidemia in diabetic rats. These findings demonstrate the combination of curcumin (natural antioxidant) and aminoguanidine (prototype therapeutic agent with anti-AGE activity) as a potential complementary therapeutic option for use with antihyperglycemic agents, which may aggregate beneficial effects against diabetic complications.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Diabetes Mellitus Experimental/patologia , Produtos Finais de Glicação Avançada/metabolismo , Guanidinas/farmacologia , Estresse Oxidativo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Comportamento Alimentar/efeitos dos fármacos , Frutosamina/metabolismo , Hemoglobinas Glicadas/metabolismo , Rim/patologia , Lipídeos/sangue , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Estreptozocina
5.
J Nutr Biochem ; 76: 108303, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812909

RESUMO

The development of obesity-associated complications is related to various pathogenic events including chronic inflammation, oxidative stress and generation of advanced glycation end products (AGEs). Due to their antioxidant, anti-inflammatory and antiglycation properties, trigonelline and curcumin are interesting candidates to counteract complications of obesity and diabetes mellitus. The current study aimed to investigate the effects of treatment with curcumin or trigonelline mixed into yoghurt, alone or in combination, on mice fed high-fat diet (HFD); the focus was mainly on the potential of these phytochemicals to counteract oxidative and glycative stress. Yoghurt alone improved glucose tolerance and reduced proinflammatory cytokine levels in HFD mice; however, it did not affect the antioxidant status. Trigonelline-enriched yoghurt prevented fat accumulation in adipose tissue, improved both insulin sensitivity and glucose tolerance and exerted anti-inflammatory and antiglycation activities (reduced AGEs and AGE receptor levels and increased the levels of components related to AGE detoxification) in liver and kidney of HFD mice. Curcumin-enriched yoghurt exerted anti-inflammatory and potent antioxidant properties (increased antioxidant enzyme activities and decreased lipid peroxidation) in liver and kidney of HFD mice. However, several beneficial effects were nullified when trigonelline and curcumin were administered in combination. Trigonelline and curcumin have emerged as promising complementary therapy candidates for liver and kidney complications associated with obesity. However, the administration of these phytochemicals in combination, at least in HFD mice, was not effective; inhibition of biotransformation processes and/or the reaching of toxic doses during combined treatment may be prevailing over the individual pharmacodynamic actions of these phytochemicals.


Assuntos
Alcaloides/administração & dosagem , Curcumina/administração & dosagem , Glicosilação/efeitos dos fármacos , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Quimioterapia Combinada , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Diabetol Metab Syndr ; 11: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061679

RESUMO

BACKGROUND: Combination of current antidiabetic agents with natural antioxidants to manage diabetes mellitus and its complications has appeared as an emerging trend. Curcumin, a yellow pigment isolated from Curcuma longa rhizomes, has gained attention due to its beneficial effects in controlling the disturbances observed in diabetes mellitus. The purpose of this study was to investigate if yoghurt enriched with curcumin and metformin, individually or as mixtures, ameliorates physiometabolic parameters, glycoxidative stress biomarkers, and paraoxonase 1 (PON 1) activity in diabetic rats. METHODS: Streptozotocin-diabetic rats (6-week-old Wistar rats) were treated for 30 days with curcumin and metformin, isolated or as mixtures in yoghurt (10 rats/group). After treatments, the plasma levels of glucose, triacylglycerol, cholesterol, thiobarbituric acid reactive substances (TBARS, a biomarker of lipid oxidation), fluorescent advanced glycation end products (AGEs), and the activity of PON 1, an antioxidant enzyme were assessed. Data were analyzed using one-way analysis of variance (ANOVA) followed by Student-Newman-Keuls test. RESULTS: Treatment of diabetic rats with curcumin or metformin alone decreased the plasma levels of glucose, triacylglycerol, cholesterol, TBARS, and fluorescent AGEs, as well as increased the activity of PON 1. The combination of metformin with curcumin further decreased dyslipidemia and TBARS levels in diabetic rats, indicating synergy, and maintained the high levels of PON 1. CONCLUSION: These findings indicated that curcumin combined with metformin may act synergistically on dyslipidemia and oxidative stress, as well as increased PON 1 levels. Therefore, it might be a promising strategy for combating diabetic complications, mainly the cardiovascular events.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa