Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Pediatr Emerg Care ; 38(3): e1123-e1126, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550918

RESUMO

OBJECTIVES: Ankle and midfoot injuries constitute one of the most frequent reasons to visit the pediatric emergency department (ED). The aims of the study were (1) to determine the feasibility of the Ottawa Ankle Rules (OARs) in a pediatric ED and its reliability to safely manage ankle and midfoot injuries and (2) to verify the impact in reducing the number of radiographs, healthcare costs, and time spent in the ED. METHODS: The prospective study enrolled 90 patients for the control group and 94 for the case group. For the control group, the standard of practice was registered. In the case group, before beginning enrolment, an instruction of how to apply the OARs were given to all clinicians. After that, OARs were applied according to patient complaints. A follow-up call was made for both groups. RESULTS: The mean age of the control group was 11.9 years (standard deviation, 3.267 years), whereas in the case group was 11.3 years (standard deviation, 3.533 years). Demographic and injury characteristics were similar in both groups. A significant statistical difference was verified in the number of radiographs (P = 0.001) with a reduction of 16.7% in the case group. Patients who did not perform radiography, in the case group, spent at least 1 hour less than the ones who did. The OARs have shown a sensitivity of 100% (95% confidence interval, 39.76-100.00) and specificity of 23.33% (95% CI, 15.06-33.43) with a negative predictive value of 100%. CONCLUSIONS: The OARs are an important clinical instrument with a high sensitivity and negative predictive value, which allows clinicians to avoid unnecessary exposure to radiation without missing clinically relevant fractures.


Assuntos
Traumatismos do Tornozelo , Fraturas Ósseas , Tornozelo , Traumatismos do Tornozelo/diagnóstico por imagem , Criança , Serviço Hospitalar de Emergência , Fraturas Ósseas/diagnóstico por imagem , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766498

RESUMO

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


Assuntos
Organismos Aquáticos/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/química , Composição de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanomedicina/métodos , Nanopartículas/química , Polifenóis/administração & dosagem , Polifenóis/química , Engenharia Tecidual/métodos
3.
Molecules ; 24(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669398

RESUMO

Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL-1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300⁻400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around -30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Polissacarídeos/química , Quercetina/administração & dosagem , Quercetina/farmacocinética , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Nanomedicine ; 10(5): 1021-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24412471

RESUMO

This work aims to develop poly(d,l-lactide-co-glycolide) (PLGA)-nanospheres containing amphotericin B (AmB) with suitable physicochemical properties and anti-parasitic activity for visceral leishmaniasis (VL) therapy. When compared with unloaded-PLGA-nanospheres, the AmB-loaded PLGA-nanospheres displayed an increased particle size without affecting the polydispersity and its negative surface charge. AmB stability in the PLGA-nanospheres was >90% over 60-days at 30°C. The AmB-PLGA-nanospheres demonstrated significant in vitro and in vivo efficacy and preferential accumulation in the visceral organs. In addition, an immune-modulatory effect was observed in mice treated with AmB-PLGA-nanospheres, correlating with improved treatment efficacy. The in vitro cytotoxic response of the T-lymphocytes revealed that AmB-PLGA-nanospheres efficacy against VL infection was strictly due to the action of CD8(+)- but not CD4(+)-T lymphocytes. Overall, we demonstrate a crucial role for CD8(+) cytotoxic T lymphocytes in the efficacy of AmB-PLGA nanospheres, which could represent a potent and affordable alternative for VL therapy. FROM THE CLINICAL EDITOR: This study demonstrates a crucial role for CD8+ T lymphocytes in eliminating visceral leishmaniasis in a murine model by enhancing the cytotoxic efficacy of CD8+ T-cells via amphotericin-B-PLGA nanospheres, paving a way to a unique, potentially more potent and cost-effective therapeutic strategy.


Assuntos
Anfotericina B/química , Anfotericina B/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Nanosferas/química , Animais , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/metabolismo
6.
Ageing Res Rev ; 100: 102430, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032611

RESUMO

Human skin ageing is closely related to the ageing of the whole organism, and it's a continuous multisided process that is influenced not only by genetic and physiological factors but also by the cumulative impact of environmental factors. Currently, there is a scientific community need for developing skin models representing ageing processes to (i) enhance understanding on the mechanisms of ageing, (ii) discover new drugs for the treatment of age-related diseases, and (iii) develop effective dermo-cosmetics. Bioengineers worldwide are trying to reproduce skin ageing in the laboratory aiming to better comprehend and mitigate the senescence process. This review provides details on the main ageing molecular mechanisms and procedures to obtain in vitro aged skin models.


Assuntos
Senescência Celular , Envelhecimento da Pele , Pele , Humanos , Senescência Celular/fisiologia , Envelhecimento da Pele/fisiologia , Modelos Biológicos , Envelhecimento/fisiologia
7.
Pharmaceutics ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931907

RESUMO

To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 µg/mL. Upon incorporation into PLGA nanoparticles, 20 µg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 µg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.

8.
Dalton Trans ; 52(33): 11679-11690, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552495

RESUMO

Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Compostos Organometálicos , Rutênio , Humanos , Feminino , Compostos Organometálicos/farmacologia , Compostos Organometálicos/metabolismo , Rutênio/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Tolueno , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia
9.
Chem Phys Lipids ; 249: 105254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279929

RESUMO

The application of nanoparticles as permeation enhancers in skin drug delivery is a growing research field. However, the mechanisms of nanoparticles' interaction with the skin structure are still unknown. Fucoidan/chitosan nanoparticles have demonstrated several physicochemical and biological advantages, among which is the enhancement of skin permeation. This study aims to elucidate permeation enhancement mechanisms using synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) combined with multivariate analysis and in vitro skin permeation assay. Given the molecular weight influence on chitosan's properties, the nanoparticles-skin interactions were evaluated with nanoparticles produced using low- and medium-molecular-weight chitosan. Chemical maps and spectral analysis revealed that fucoidan/chitosan nanoparticles induced changes in the lipids and protein regions. Inter-sample spectral differences were identified using principal component analysis. Low molecular weight fucoidan/ chitosan nanoparticles caused changes in the skin lipids' lateral packing and structure at the stratum corneum layer towards a less ordered state and higher fluidity, and no evidence was found on proteins structure. The opposite was revealed for medium molecular weight fucoidan/chitosan nanoparticles, which induced changes in the secondary structure of keratin and altered lipid structure to an ordered and dense conformation. In vitro permeation assays with Franz diffusion cells correlate with the observed changes in the skin lipid and protein structure with enhanced skin permeation of a hydrophilic molecule incorporated within the fucoidan/chitosan nanoparticles. The findings of this study unveil molecular changes in the skin structure induced by the nanoparticles only possible with the application of the powerful and precise SR-FTIRM technique. This knowledge allows the design of nanoparticles towards an internalization pathway determining their fate within the skin structure.


Assuntos
Quitosana , Nanopartículas , Síncrotrons , Quitosana/química , Pele/química , Nanopartículas/química , Proteínas/metabolismo , Lipídeos/química , Administração Cutânea
10.
Pharmaceutics ; 14(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456586

RESUMO

In the last years, microneedles (MNs) have been considered a valuable, painless, and minimally invasive approach for controlled transdermal drug delivery (TDD). Rivastigmine (RV), a drug administered to patients suffering from dementia, is currently delivered by oral or transdermal routes; however, both present limitations, mainly gastrointestinal adverse symptoms or local skin irritation and drug losses, respectively, for each route. Given this, the objective of the present work was to develop and evaluate the potential of polymeric MNs for RV transdermal delivery in a controlled manner. Polymeric MNs with two needle heights and different compositions were developed with calcein as a fluorescent model molecule. Morphology and mechanical characterisation were accessed. Skin permeation experiments showed the ability of the devices to deliver calcein and confirmed that the arrays were able to efficiently pierce the skin. To obtain a new TDD anti-dementia therapeutic solution, RV was loaded in 800 µm polymeric MNs of alginate and alginate/k-carrageenan MNs. In the presence of RV, the MN's morphology was maintained; however, the presence of RV influenced the compression force. Skin permeation studies revealed that RV-loaded MNs allowed a more efficient controlled release of the drug than the commercial patch. In vivo, skin irritation tests in rabbits revealed that the developed MNs were innocuous upon removal, in contrast with the evidence found for Exelon®, the commercial patch, which caused slight mechanical damage to the skin. The herein-produced MNs demonstrated a more controlled release of the drug, being the more suitable option for the transdermal delivery of RV.

11.
Carbohydr Polym ; 266: 118098, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044917

RESUMO

Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.


Assuntos
Alginatos/química , Quitosana/química , Sistemas de Liberação de Medicamentos/instrumentação , Ácido Hialurônico/química , Agulhas , Preparações Farmacêuticas/administração & dosagem , Administração Cutânea , Animais , Organismos Aquáticos/química , Sequência de Carboidratos , Tratamento Farmacológico , Humanos
12.
Antioxidants (Basel) ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573007

RESUMO

Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly found in plants. Due to their wide range of therapeutic properties, which include antioxidant, anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated to be promising agents in the treatment of several skin disorders. However, their lipophilic nature and poor water solubility invariably lead to limited oral bioavailability. In addition, they are rapidly degraded and metabolized in the human body, hindering their potential contribution to the prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous delivery systems have been extensively studied. Topical drug delivery besides offering an alternative administration route also ensures a sustained release of the active compound at the desired site of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced toxicity. This review focuses on currently available formulations used to administer either topically or systemically different classes of flavonoids in the skin, highlighting their potential application as therapeutic and preventive agents.

13.
ACS Appl Mater Interfaces ; 13(36): 42329-42343, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464076

RESUMO

Bacterial biofilms are a major health concern, mainly due to their contribution to increased bacterial resistance to well-known antibiotics. The conventional treatment of biofilms represents a challenge, and frequently, eradication is not achieved with long-lasting administration of antibiotics. In this context, the present work proposes an innovative therapeutic approach that is focused on the encapsulation of N-acetyl-l-cysteine (NAC) into lipid nanoparticles (LNPs) functionalized with d-amino acids to target and disrupt bacterial biofilms. The optimized formulations presented a mean hydrodynamic diameter around 200 nm, a low polydispersity index, and a high loading capacity. These formulations were stable under storage conditions up to 6 months. In vitro biocompatibility studies showed a low cytotoxicity effect in fibroblasts and a low hemolytic activity in human red blood cells. Nevertheless, unloaded LNPs showed a higher hemolytic potential than NAC-loaded LNPs, which suggests a safer profile of the latter. The in vitro antibiofilm efficacy of the developed formulations was tested against Staphylococcus epidermidis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) mature biofilms. The results showed that the NAC-loaded LNPs were ineffective against S. epidermidis biofilms, while a significant reduction of biofilm biomass and bacterial viability in P. aeruginosa biofilms were observed. In a more complex therapeutic approach, the LNPs were further combined with moxifloxacin, revealing a beneficial effect between the LNPs and the antibiotic against P. aeruginosa biofilms. Both alone and in combination with moxifloxacin, unloaded and NAC-loaded LNPs functionalized with d-amino acids showed a great potential to reduce bacterial viability, with no significant differences in the presence or absence of NAC. However, the presence of NAC in NAC-loaded functionalized LNPs shows a safer profile than the unloaded LNPs, which is beneficial for an in vivo application. Overall, the developed formulations present a potential therapeutic approach against P. aeruginosa biofilms, alone or in combination with antibiotics.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Lipossomos/química , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Acetilcisteína/química , Acetilcisteína/toxicidade , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Sinergismo Farmacológico , Humanos , Lipossomos/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Nanopartículas/toxicidade , Palmitatos/química , Palmitatos/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Pseudomonas aeruginosa/fisiologia
14.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443866

RESUMO

Inflammatory bowel disease (IBD) is a group of disabling, destructive and incurable immune-mediated inflammatory diseases comprising Crohn's disease (CD) and ulcerative colitis (UC), disorders that are highly prevalent worldwide and demand a large investment in healthcare. A persistent inflammatory state enables the dysfunction and destruction of healthy tissue, hindering the initiation and endurance of wound healing. Current treatments are ineffective at counteracting disease progression. Further, increased risk of serious side effects, other comorbidities and/or opportunistic infections highlight the need for effective treatment options. Gut microbiota, the key to preserving a healthy state, may, alternatively, increase a patient's susceptibility to IBD onset and development given a relevant bacterial dysbiosis. Hence, the main goal of this review is to showcase the main conventional and emerging therapies for IBD, including microbiota-inspired untargeted and targeted approaches (such as phage therapy) to infection control. Special recognition is given to existing targeted strategies with biologics (via monoclonal antibodies, small molecules and nucleic acids) and stimuli-responsive (pH-, enzyme- and reactive oxygen species-triggered release), polymer-based nanomedicine that is specifically directed towards the regulation of inflammation overload (with some nanosystems additionally functionalized with carbohydrates or peptides directed towards M1-macrophages). The overall goal is to restore gut balance and decrease IBD's societal impact.

15.
Int J Pharm ; 591: 119960, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049358

RESUMO

A lipid-based permeation assay (PVPASC) with a lipid composition similar to Human stratum corneum layer has been previously reported. The aim of this study was to further characterize the PVPASC model in the presence of co-solvents and to determine its applicability to evaluate drug permeability with drug-loaded nanoparticles. Data obtained from PVPASC model were compared with results from isolated SC from pig ear skin. The characterization revealed that the PVPASC barriers retain integrity and calcein permeability when stored up to 12 weeks at -20 °C, in the presence of different co-solvents, and under a skin environment pH range. The permeation profile of calcein in the lipid-based barrier correlated well with data obtained for the isolated SC model and revealed higher reproducibility. Cyclosporine A (CsA) was selected as a model drug, given its relevance for skin-inflammatory diseases and two types of lipid nanoparticles were used to assess the permeability of the PVPASC model. It was possible to distinguish the permeability between free and nanoparticles' loaded cyclosporine. Data obtained with CsA-loaded nanoformulations indicated a higher permeation rate than the obtained for the solid lipid nanoparticles or the free drug. The PVPASC model could be applied as a cost-effective alternative for skin early drug development.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Animais , Humanos , Lipídeos , Permeabilidade , Preparações Farmacêuticas/metabolismo , Reprodutibilidade dos Testes , Pele/metabolismo , Absorção Cutânea , Suínos
16.
Br J Pharmacol ; 177(19): 4314-4329, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32608012

RESUMO

Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.


Assuntos
Preparações Farmacêuticas , Pele , Sistemas de Liberação de Medicamentos , Humanos , Modelos Biológicos
17.
Colloids Surf B Biointerfaces ; 193: 111121, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32464354

RESUMO

Vitamin A is essential to human health. Encapsulation in lipid nanoparticles was used to overcome vitamin A poor water solubility in beverages. This work aimed to develop and characterize lipid nanoparticles, containing vitamin A, for food fortification, assuring its stability and oral bioaccessibility. Lipid nanoparticles optimized for the oral administration of vitamin A using the hot homogenization method. The nanoparticles subjected to conditions used in food processing suffered no changes in their size or vitamin content. In vitro assays simulating gastrointestinal digestion suggested that the nanoparticles are not altered in the stomach, and the biocompatibility of the formulations showed no toxicity in fibroblasts. With the developed nanoparticles 80% of the added vitamin reached the intestine in the digestibility assay, demonstrating suitability as a nanotechnology application in the food research for the food industry.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Vitamina A/química , Administração Oral , Animais , Cápsulas/administração & dosagem , Cápsulas/química , Linhagem Celular , Camundongos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Propriedades de Superfície , Vitamina A/administração & dosagem
18.
Int J Biol Macromol ; 158: 180-188, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32360466

RESUMO

Considering the potential of mucoadhesive properties of nanoparticles in oral delivery, this work describes the preparation and characterization of fucoidan/chitosan nanoparticles loaded with methotrexate (MTX) intended to lung cancer therapy. The nanoparticles were produced and characterized in terms of size, surface charge, entrapment efficiency, and morphology. The size of the developed nanoparticles was around 300 nm, the zeta potential value was negative (ca. -30 mV), revealing a low tendency to aggregate. The self-assembled fucoidan/chitosan nanoparticles were stable at acidic pH (1.6-5.2), without disintegration under pH 6-7.4, revealing resistance through the gastrointestinal tract, and were found to be mucoadhesive suggesting ability to enhance drug oral bioavailability. Lung cancer cells quickly internalized the developed nanoparticles. Moreover, MTX-loaded fucoidan/chitosan nanoparticles up to 245 µg mL-1 in polymer equivalent to 23.5 µg mL-1 of MTX were safe towards fibroblasts but hampered lung cancer cell proliferation mediated by an apoptotic process. MTX-loaded nanoparticles were 7-fold more effective in inhibiting lung cancer cells proliferation than the free drug, showing the potential of fucoidan-chitosan nanoparticles to improve the cytotoxicity of free methotrexate on A549 lung cancer cells. These results also demonstrate that fucoidan/chitosan nanoparticles may provide a suitable platform for poor-water soluble compounds' oral delivery.

19.
Mater Sci Eng C Mater Biol Appl ; 116: 111255, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806240

RESUMO

Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 µg/mL and 12 µg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Metotrexato , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Hipertermia , Células MCF-7 , Metotrexato/farmacologia , Nanomedicina
20.
Pharmaceutics ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260825

RESUMO

Nature has led to the discovery of biopolymers with noteworthy pharmaceutical applications. Blended biopolymers have demonstrated promising characteristics when compared with their individual counterparts. Sodium alginate (SA) is a marine polymer that has demonstrated the ability to form hydrogels, an interesting property for the development of cutaneous formulations. Predicting the good performance of blended biopolymers, a novel series of hybrid hydrogels based on SA and poly(vinyl) alcohol (PVA) were prepared. Quercetin, a natural polyphenolic flavonoid commonly found in fruits and vegetables, is widely known for its strong anti-inflammatory and antioxidant activity, thus with potential applications against melanoma, dermatitis, psoriasis, and skin ageing. Here, hydrogels were produced at different ratios of SA and PVA. The surface morphology, structure, interaction of polymers, the capacity to absorb water and the entrapment efficiency of quercetin were evaluated for the blended hydrogels. Targeting the cutaneous application of the formulations, the rheological properties of all unloaded and quercetin-loaded hydrogels revealed pseudoplastic behavior, evidence of non-thixotropy, good resistance to deformation, and profile maintenance with temperatures ranging from 20 °C up to 40 °C. The incorporation of quercetin in the hydrogel retained its antioxidant activity, confirmed by radical scavenging assays (ABTS and DPPH). The permeability of quercetin through the skin showed different penetration/permeation profiles according to the hydrogel's blend. This behavior will allow the selection of SA-PVA at 2/1 ratio for a local and prolonged skin effect, making the use of these hydrogels a good solution to consider for the treatment of skin ageing and inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa