Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 173: 141-149, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306127

RESUMO

Different carrier systems have been investigated for myocardial delivery of biopharmaceuticals for heart disease. Here, we aimed to evaluate the heart retention and tissue response of liposomes intended for cardiac drug delivery. Liposomes were produced by the lipid thin film hydration method followed by sonication. Cytocompatibility tests were performed in murine L929 fibroblasts and H2c9 cardiomyocytes using the Alamar Blue assay. In vivo experiments were assessed in a model of myocardial infarction induced by isoproterenol in mice. Cardiac delivery of fluorescent liposomes (rhodamine B-labeled) with different mean sizes (165 nm, 468 nm, 1551 nm and 1954 nm) was performed by ultrasound-guided transthoracic injection. After three days, mice were euthanized for histological evaluation using optical and fluorescence microscopy. No cytotoxic lipid concentrations were determined in the range 9.3 - 120 µM for fibroblasts and cardiomyocytes exposed to liposomes. In vivo, large liposomes induced significant inflammation in myocardium compared with the control group (p < 0.0001). In contrast, heart mice injected with 468 nm-sized liposomes exhibited a lower number of inflammatory cells. Still, a greater tissue retention 72 h post-injection was found. Therefore, this study demonstrated the feasibility of the echocardiography-guided percutaneous injection to deliver liposomes successfully into the myocardium in a minimally invasive manner. In addition, these findings indicate the potential of liposomes as carriers of biopharmaceuticals for myocardial delivery, supporting the development of further research on these delivery systems for heart disease.


Assuntos
Lipossomos , Infarto do Miocárdio , Animais , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio , Ultrassonografia , Ultrassonografia de Intervenção
2.
ChemMedChem ; 16(4): 662-678, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33231370

RESUMO

Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits ß-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent in vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy in vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Ouro/farmacologia , Primaquina/farmacologia , Antimaláricos/química , Cloroquina/química , Relação Dose-Resposta a Droga , Ouro/química , Humanos , Malária/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Primaquina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa