Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612846

RESUMO

Acute HSV-1 infection is associated with mild symptoms, such as fever and lesions of the mouth, face and skin. This phase is followed by a latency period before reactivation, which is associated with symptoms ranging from ulcers to encephalitis. Despite available anti-HSV-1 drugs, the development of new antiviral agents is sought due to the presence of resistant viruses. Melatonin, a molecule secreted by the pineal gland, has been shown to be an antioxidant, inducer of antioxidant enzymes, and regulator of various biological processes. Clinical trials have explored its therapeutic utility in conditions including infections. This study focuses on melatonin's role in HSV-1 replication and the underlying mechanisms. Melatonin was found to decrease the synthesis of HSV-1 proteins in infected Vero cells measured by immunofluorescence, indicating an inhibition of HSV-1 replication. Additionally, it regulates the activities of antioxidant enzymes and affects proteasome activity. Melatonin activates the unfolded protein response (UPR) and autophagy and suppresses apoptosis in HSV-1-infected cells. In summary, melatonin demonstrates an inhibitory role in HSV-1 replication by modulating various cellular responses, suggesting its potential utility in the treatment of viral infections.


Assuntos
Herpesvirus Humano 1 , Melatonina , Glândula Pineal , Chlorocebus aethiops , Animais , Melatonina/farmacologia , Antioxidantes/farmacologia , Células Vero
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338718

RESUMO

Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1ß and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Sarcopenia , Humanos , Idoso , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Sarcopenia/etiologia , Caspase 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Músculo Esquelético/metabolismo
3.
Aging Clin Exp Res ; 35(2): 323-331, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417136

RESUMO

OBJECTIVES: The impact of functional capacity over the entire functional continuum in older adults undergoing aortic valve replacement (AVR) has not been studied to date. This study aims to analyze 1.- the distribution of a cohort of older adults presenting severe aortic stenosis (AS) amenable to AVR in the different categories of the Functional Continuum Scale (FCS); 2.- its association with decision-making regarding valve disease; and 3.- its impact upon the one-year mortality rate of surgical (SAVR), transcatheter (TAVR) aortic valve replacement, or the decision to provide conservative management (OMT). METHODS: This prospective study included patients from the FRESAS (FRailty-Evaluation-in-Severe-Aortic-Stenosis) registry evaluated by the reference Heart-Team of a region in northern Spain. All the patients underwent comprehensive geriatric assessment. RESULTS: The study comprised 257 patients aged 84.0 ± 3.9 years. MANAGEMENT: SAVR: 25.3%, TAVR: 58.0% and OMT: 16.7%. Increased patient functional capacity was associated with an increased tendency to perform more invasive valve disease treatment. The overall one-year survival rate was 81.3%. One-year all-cause mortality: FCS-1 to FCS-2 "robust" 11.5%, FCS-3 to FCS-4 "prefrail" 14.7%, FCS-5 "frail" 19.2% and FCS-6 to FCS-8 "dependent" 45.0%; p < 0.001. Adjusted mortality analysis: FCS with HR = 1.206 [95%CI, 0.999-1.451 (p = 0.051)]; EuroSCORE-II with HR = 1.071 [95%CI, 1.006-1.161 (p = 0.033)]; and OMT with HR = 2.840 [95%CI, 1.409-5.772 (p = 0.004)] were retained in the final multivariable logistic regression model. CONCLUSIONS: In older AS patients amenable to AVR, the FCS is a useful predictive tool that may aid clinical decision-making.


Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Substituição da Valva Aórtica Transcateter , Idoso , Humanos , Valva Aórtica/cirurgia , Estudos Prospectivos , Fatores de Risco , Resultado do Tratamento
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902233

RESUMO

There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.


Assuntos
Melatonina , Células-Tronco Neurais , Melatonina/farmacologia , Hipocampo , Neurogênese , Neurônios
5.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499366

RESUMO

In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia , Inflamação/patologia , Obesidade/metabolismo
6.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080336

RESUMO

Adult hippocampal neurogenesis is altered during aging and under different neuropsychiatric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties during aging and neuropathological conditions. In this study, we evaluated the effects of chronic treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics aging-related Alzheimer's pathology. Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age include the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations in neural processes and the length of neuronal prolongations and ß-amyloid accumulation in the cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice. Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the functionality of adult hippocampal neurogenesis in aged SAMP8 mice.


Assuntos
Melatonina , Células-Tronco Neurais , Envelhecimento , Animais , Hipocampo , Melatonina/farmacologia , Camundongos , Neurogênese , Neurônios
7.
J Pineal Res ; 66(1): e12534, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30329173

RESUMO

There are several pathologies, syndromes, and physiological processes in which autophagy is involved. This process of self-digestion that cells trigger as a survival mechanism is complex and tightly regulated, according to the homeostatic conditions of the organ. However, in all cases, its relationship with oxidative stress alterations is evident, following a pathway that suggests endoplasmic reticulum stress and/or mitochondrial changes. There is accumulating evidence of the beneficial role that melatonin has in the regulation and restoration of damaged autophagic processes. In this review, we focus on major physiological changes such as aging and essential pathologies including cancer, neurodegenerative diseases, viral infections and obesity, and document the essential role of melatonin in the regulation of autophagy in each of these different situations.


Assuntos
Autofagia/efeitos dos fármacos , Melatonina/farmacologia , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
8.
J Pineal Res ; 61(1): 108-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27090356

RESUMO

The sedentary lifestyle of modern society along with the high intake of energetic food has made obesity a current worldwide health problem. Despite great efforts to study the obesity and its related diseases, the mechanisms underlying the development of these diseases are not well understood. Therefore, identifying novel strategies to slow the progression of these diseases is urgently needed. Experimental observations indicate that melatonin has an important role in energy metabolism and cell signalling; thus, the use of this molecule may counteract the pathologies of obesity. In this study, wild-type and obese (ob/ob) mice received daily intraperitoneal injections of melatonin at a dose of 500 µg/kg body weight for 4 weeks, and the livers of these mice were used to evaluate the oxidative stress status, proteolytic (autophagy and proteasome) activity, unfolded protein response, inflammation and insulin signalling. Our results show, for the first time, that melatonin could significantly reduce endoplasmic reticulum stress in leptin-deficient obese animals and ameliorate several symptoms that characterize this disease. Our study supports the potential of melatonin as a therapeutic treatment for the most common type of obesity and its liver-associated disorders.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leptina/deficiência , Fígado/metabolismo , Melatonina/farmacologia , Animais , Autofagia/genética , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/genética , Camundongos , Camundongos Knockout , Camundongos Obesos
9.
Int J Mol Sci ; 17(10)2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27783055

RESUMO

Considering the increased speed at which the world population is aging, sarcopenia could become an epidemic in this century. This condition currently has no means of prevention or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical scavenger that is normally produced in all organisms. This molecule has been implicated in a huge number of biological processes, from anticonvulsant properties in children to protective effects on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction. Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential utility in the treatment of sarcopenic patients and related dysfunctions should be considered.


Assuntos
Antioxidantes/uso terapêutico , Melatonina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Sarcopenia/tratamento farmacológico , Envelhecimento , Animais , Humanos , Músculo Esquelético/fisiopatologia , Osteoporose/complicações , Sarcopenia/complicações , Sarcopenia/etiologia , Sarcopenia/fisiopatologia
10.
J Pineal Res ; 59(4): 403-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26272235

RESUMO

Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/fisiologia , Melatonina/metabolismo , Melatonina/fisiologia , Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Cloroplastos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Sequestradores de Radicais Livres/metabolismo , Humanos , Melatonina/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
J Pineal Res ; 56(2): 126-33, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134701

RESUMO

Despite efforts to curb the incidence of obesity and its comorbidities, this condition remains the fifth leading cause of death worldwide. To identify ways to reduce this global effect, we investigated the actions of daily melatonin administration on oxidative stress parameters and autophagic processes as a possible treatment of obesity in ob/ob mice. The involvement of melatonin in many physiological functions, such as the regulation of seasonal body weight variation, glucose uptake, or adiposity, and the role of this indoleamine as an essential antioxidant, has become the focus of numerous anti-obesity studies. Here, we examined the oxidative status in the livers of obese melatonin-treated and untreated mice, observing a decrease in the oxidative stress levels through elevated catalase activity. ROS-mediated autophagy was downregulated in the liver of melatonin-treated animals and was accompanied by significant accumulation of p62. Autophagy is closely associated with adipogenesis; in this study, we report that melatonin-treated obese mice also showed reduced adiposity, as demonstrated by diminished body weight and reduced peroxisome proliferator-activated receptor gamma expression. Based on these factors, it is reasonable to assume that oxidative stress and autophagy play important roles in obesity, and therefore, melatonin could be an interesting target molecule for the development of a potential therapeutic agent to curb body weight.


Assuntos
Adipogenia/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Melatonina/administração & dosagem , Camundongos , Camundongos Obesos
12.
Foods ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338578

RESUMO

For fresh meat consumers, eating satisfaction is of utmost importance and tenderness is one of the most important characteristics in this regard. Our study examined beef of different animal biotypes of the autochthonous breed "Asturiana de los Valles" (AV) to determine if early postmortem oxidative and proteolytic processes may influence the final tenderness of the product. This meat-specialized breed shows different biotypes depending on the frequency of a myostatin mutation "mh" that induces double-muscling or muscular hypertrophy (mh/mh, mh/+, +/+). Samples from the longissimus dorsi muscles of yearling bulls were analyzed during the first 24 h postmortem. Changes in the redox balance of muscle cells were significant in the first hours after slaughter; total antioxidant activity was higher in the mh/mh biotype and it followed the shortening of the sarcomeres, a key parameter in understanding meat tenderness. The two proteolytic systems studied (proteasome and lysosome) followed distinct patterns. Proteasome activity was higher in the (mh/+) biotype, which correlated with higher protein damage. Lysosome proteolysis was increased in the more tender biotypes (mh genotypes). Autophagic activation showed significant differences between the biotypes, with (mh/mh) showing more intense basal autophagy at the beginning of the postmortem period that decreased gradually (p < 0.001), while in the normal biotype (+/+), it was slightly delayed and then increased progressively (p < 0.001). These results suggest that this type of catalytic process and antioxidant activity could contribute to the earlier disintegration of the myofibers, particularly in the mh/mh biotypes, and influence the conversion of muscle into meat.

13.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540950

RESUMO

In an animal production system, different stressors may cause the depletion of muscle glycogen stores, resulting in an elevated pH at 24 h post mortem (pH24), which leads to cell metabolism alterations that affect the conversion of muscle into meat, causing meat quality defects, such as dark-cutting beef, also known as dark, firm, and dry (DFD) beef. This process may involve the alteration of small non-coding RNAs (miRNAs), which play critical regulatory roles in cellular processes. Here, we determined whether differential miRNA expression in the Longissimus thoracis et lumborum muscle from the Asturiana de los Valles breed at 24 h post mortem could serve as an early indicator of beef quality defects. Following total RNA extraction, complete miRNAome sequencing revealed 12 miRNAs that were significantly upregulated (p < 0.001) in DFD beef compared to the levels in CONTROL beef. These miRNAs are mainly involved in the cellular responses to redox imbalances and apoptosis. Among these, four miRNAs known to be related to oxidative stress (bta-miR-1246, bta-miR-2332, bta-miR-23b-5p, and bta-miR-2411-3p) were validated via quantitative RT-PCR. Some of their target proteins were also analyzed using Western blotting. High 70 kDa heat shock protein and low Caspase-9 expressions (p < 0.01) were found in DFD beef, suggesting the downregulation of apoptosis. These results suggest the importance of miRNAs in regulating stress in muscle cells during early post mortem, as differences in the abundance of some of these miRNAs are still observed at 24 h post mortem. These changes lead to an inadequate conversion of muscle into meat, resulting in meats with quality defects.

14.
Cell Death Dis ; 15(3): 200, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459002

RESUMO

During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.


Assuntos
Mioblastos , Transdução de Sinais , Autofagia/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Camundongos
15.
J Anat ; 222(5): 558-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23496762

RESUMO

The Syrian hamster Harderian gland (HG) has a marked sexual dimorphism and exhibits an extraordinary rate of porphyrinogenesis. The physiological oxidative stress, derived from constant porphyrin production, is so high that the HG needs additional survival autophagic mechanisms to fight against this chronic exposure, provoking the triggering of a holocrine secretion in female glands that forms two types of secretory masses: intra-tubular-syncytial and inter-tubular-syncytial masses. The aim of this work was to study the development of this inter-tubular holocrine secretion. To approach this task, we have considered that the steps developed during the formation of the so-called invasive masses consist of the growth of epithelial cells, cell detachment from the basal lamina and invasion of surrounding tissues. The presence of these masses, particularly in the female HG, are closely linked to sexual dimorphism in redox balance and to alterations in the expression of certain factors such as cytokeratins, P-cadherin, matrix metalloproteinases, cathepsin H, proliferating cell nuclear antigen, p53, CD-31 and vascular endothelial growth factor, which seem to be involved in tissue remodeling. The results document unusual mechanisms of secretion in Syrian hamster HG: an extraordinary system of massive secretion through the conjunctive tissue, disrupting the branched structure of the gland.


Assuntos
Glândula de Harder/anatomia & histologia , Mesocricetus/anatomia & histologia , Animais , Autofagia/fisiologia , Caderinas/metabolismo , Catepsina H/metabolismo , Cricetinae , Feminino , Glândula de Harder/fisiologia , Glândula de Harder/ultraestrutura , Imuno-Histoquímica , Queratinas/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Mesocricetus/fisiologia , Estresse Oxidativo/fisiologia , Caracteres Sexuais
16.
Rev Med Virol ; 22(5): 323-38, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22511571

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional signaling molecule that has a variety of important functions. Numerous clinical trials have examined the therapeutic usefulness of melatonin in different fields of medicine. Clinical trials have shown that melatonin is efficient in preventing cell damage under acute (sepsis, asphyxia in newborns) and chronic states (metabolic and neurodegenerative diseases, cancer, inflammation, aging). The beneficial effects of melatonin can be explained by its properties as a potent antioxidant and antioxidant enzyme inducer, a regulator of apoptosis and a stimulator of immune functions. These effects support the use of melatonin in viral infections, which are often associated with inflammatory injury and increases in oxidative stress. In fact, melatonin has been used recently to treat several viral infections, which are summarized in this review. The role of melatonin in infections is also discussed herein.


Assuntos
Antioxidantes/uso terapêutico , Fatores Imunológicos/uso terapêutico , Melatonina/uso terapêutico , Viroses/tratamento farmacológico , Humanos , Resultado do Tratamento
17.
Meat Sci ; 203: 109224, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37253285

RESUMO

Defects in meat quality such as dark, firm and dry (DFD) beef have been related to high levels of oxidative stress that produce cellular alterations that may affect to the process of meat quality acquisition. Despite the important role of endoplasmic reticulum (ER) in the cellular response to oxidative stress, its function in the muscle-to-meat conversion process has not yet been studied. In this study, differences in muscular antioxidant defense and the unfolded protein response (UPR) of the ER in CONTROL (normal pH24) and dark, firm, and dry (DFD, pH24 ≥ 6.2) beef at 24 h post-mortem were analyzed to understand the changes in the muscle-to-meat conversion process related to meat quality defects. DFD meat showed poor quality, lower antioxidant activity (P < 0.05) and higher UPR activation (P < 0.05), which indicates higher oxidative stress what could partly explain the occurrence of meat quality defects. Therefore, the biomarkers of these cellular processes (IRE1α, ATF6α, and p-eIF2α) are putative biomarkers of meat quality.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Bovinos , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Retículo Endoplasmático/metabolismo , Carne , Estresse do Retículo Endoplasmático
18.
Antioxidants (Basel) ; 12(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001801

RESUMO

Schizophrenia (SCH) and bipolar disorder (BD) are two of the most important psychiatric pathologies due to their high population incidence and disabling power, but they also present, mainly in their debut, high clinical similarities that make their discrimination difficult. In this work, the differential oxidative stress, present in both disorders, is shown as a concatenator of the systemic alterations-both plasma and erythrocyte, and even at the level of peripheral blood mononuclear cells (PBMC)-in which, for the first time, the different affectations that both disorders cause at the level of the cellular interactome were observed. A marked erythrocyte antioxidant imbalance only present in SCH generalizes to oxidative damage at the plasma level and shows a clear impact on cellular involvement. From the alteration of protein synthesis to the induction of death by apoptosis, including proteasomal damage, mitochondrial imbalance, and autophagic alteration, all the data show a greater cellular affectation in SCH than in BD, which could be linked to increased oxidative stress. Thus, patients with SCH in our study show increased endoplasmic reticulum (ER)stress that induces increased proteasomal activity and a multifactorial response to misfolded proteins (UPR), which, together with altered mitochondrial activity, generating free radicals and leading to insufficient energy production, is associated with defective autophagy and ultimately leads the cell to a high apoptotic predisposition. In BD, however, oxidative damage is much milder and without significant activation of survival mechanisms or inhibition of apoptosis. These clear differences identified at the molecular and cellular level between the two disorders, resulting from progressive afflictions in which oxidative stress can be both a cause and a consequence, significantly improve the understanding of both disorders to date and are essential for the development of targeted and preventive treatments.

19.
Antioxidants (Basel) ; 12(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38001815

RESUMO

Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid ß-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.

20.
Cytokine ; 58(2): 193-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22309694

RESUMO

In the present investigation we have analyzed the association between functional dependence and inflammatory biomarkers using the Barthel Index (BI) and the Katz Index (KI). This analysis may contribute to translational medicine by incorporating the clinical and laboratory data to better understand the relationship between chronic inflammation and functional dependence in the elderly population. The ultimate goal of this study was to identify possible useful biomarkers of functional dependence in the elderly. Participants in this study consisted of 120 older subjects (90 women and 30 men; range 68-105 years) who were selected from the Santa Teresa nursing home (Oviedo, Spain). We studied functional status using the following tools to diagnose the functional dependence by clinicians: BI and KI for activities of daily living. We analyzed morbidity, sociodemographic characteristics and a panel of inflammatory and inflammatory-related markers. In linear regression models adjusted by age, sex, anti-inflammatory drug use and morbid conditions high levels of interleukin 6 (IL-6) and soluble TNF receptor-I (sTNF-RI) were associated with functional dependence as measured using BI and KI. Elevated levels of red blood cell distribution width (RDW) were also associated with functional dependence measured using the KI after adjusting for the same potential confounders. The current results suggest that high IL-6, sTNF-RI and RDW levels are associated with the functional dependence in the elderly population. The results are consistent with the presumed underlying biological mechanism, in which the up-regulation of inflammatory mediators is associated with functional dependence in elderly subjects.


Assuntos
Biomarcadores/sangue , Eritrócitos/metabolismo , Interleucina-6/sangue , Receptores do Fator de Necrose Tumoral/sangue , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa