Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Mol Genet ; 20(19): 3779-86, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724554

RESUMO

Constitutional laminopathies, such as the Dunnigan familial partial lipodystrophy, are severe diseases caused by mutations in A-type lamins and share several features with metabolic syndrome (MS). In this study, we hypothesized that MS may be, in some cases, a mild form of laminopathies and use the abnormal cell nucleus phenotype observed in these diseases as a primary screening test in patients suffering from common MS. Nuclear shape and lamin A nucleoplasmic distribution abnormalities were systematically searched in lymphoblastoid cells of 87 consecutive patients with MS. In parallel, five genes encoding either the A-type lamins or the enzymes of the lamin A maturation pathway were systematically sequenced (LMNA, ZMPSTE24, ICMT, FNTA and FNTB). We identified 10 MS patients presenting abnormal nuclear shape and disturbed lamin A/C nuclear distribution. These patients were not clinically different from those without nuclear abnormalities except that they were younger, and had higher triglyceridemia and SGPT levels. Three of them carry a heterozygous mutation in LMNA or in ZMPSTE24, a gene encoding one of the lamin A processing enzymes. All three mutations are novel missense mutations predicted to be damaging. Both lymphoblastoid cells and skin fibroblasts from the patient carrying the mutation in ZMPSTE24, showed accumulation of lamin A precursor, indicating an alteration of the lamin A processing, confirmed by functional study. Together, these results show for the first time, that a significant proportion of MS patients exhibits laminopathies and suggest that systematic investigation of lamin A and its partners should be performed at the diagnosis of this syndrome.


Assuntos
Lamina Tipo A/metabolismo , Síndrome Metabólica/metabolismo , Adulto , Estudos de Coortes , Feminino , Humanos , Lamina Tipo A/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome Metabólica/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
2.
Biomedicines ; 11(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37239109

RESUMO

Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.

3.
Genes (Basel) ; 13(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741838

RESUMO

Hereditary myopathies are a group of genetically determined muscle disorders comprising more than 300 entities. In Chile, there are no specific registries of the distinct forms of these myopathies. We now report the genetic findings of a series of Chilean patients presenting with limb-girdle muscle weakness of unknown etiology. Eighty-two patients were explored using high-throughput sequencing approaches with neuromuscular gene panels, establishing a definite genetic diagnosis in 49 patients (59.8%) and a highly probable genetic diagnosis in eight additional cases (9.8%). The most frequent causative genes identified were DYSF and CAPN3, accounting for 22% and 8.5% of the cases, respectively, followed by DMD (4.9%) and RYR1 (4.9%). The remaining 17 causative genes were present in one or two cases only. Twelve novel variants were identified. Five patients (6.1%) carried a variant of uncertain significance in genes partially matching the clinical phenotype. Twenty patients (24.4%) did not carry a pathogenic or likely pathogenic variant in the phenotypically related genes, including five patients (6.1%) presenting an autoimmune neuromuscular disorder. The relative frequency of the different forms of myopathy in Chile is like that of other series reported from different regions of the world with perhaps a relatively higher incidence of dysferlinopathy.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Chile , Perfil Genético , Humanos , Debilidade Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genética
4.
Front Cell Dev Biol ; 9: 754555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888307

RESUMO

Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing. We were interested in dysferlin transcripts containing the exon 40a, and among them the transcript 11 which contains all the canonical exons and exon 40a. This alternative exon encodes a protein region that is cleaved by calpains during the muscle membrane repair mechanism. Firstly, we tested the impact of mutations in exon 40a on its cleavability by calpains. We showed that the peptide encoded by the exon 40a domain is resistant to mutations and that calpains cleaved dysferlin in the first part of DYSF exon 40a. To further explore the implication of this transcript in cell functions, we performed membrane repair, osmotic shock, and transferrin assay. Our results indicated that dysferlin transcript 11 is a key factor in the membrane repair process. Moreover, dysferlin transcript 11 participates in other cell functions such as membrane protection and vesicle trafficking. These results support the need to restore the dysferlin transcript containing the alternative exon 40a in patients affected with dysferlinopathy.

5.
Methods Mol Biol ; 1828: 489-496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30171562

RESUMO

Dysferlinopathies are rare genetic diseases affecting muscles due to mutations in DYSF. Exon 32 of DYSF has been shown to be dispensable for dysferlin functions. Here we present a method to visualize the skipping of exon 32 at the RNA and protein levels using an antisense oligonucleotide on cells derived from a dysferlinopathy-affected patient.


Assuntos
Disferlina/genética , Éxons , Distrofias Musculares/genética , Splicing de RNA , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Distrofias Musculares/terapia , Mioblastos/citologia , Mioblastos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Edição de RNA
7.
Appl Transl Genom ; 7: 26-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27054082

RESUMO

Massively parallel sequencing is rapidly becoming a widely used method in genetic diagnostics. However, there is still no clear consensus as to which approach can most efficiently identify the pathogenic mutations carried by a given patient, while avoiding false negative and false positive results. We developed a targeted exome approach (MyoPanel2) in order to optimize genetic diagnosis of neuromuscular disorders. Using this approach, we were able to analyse 306 genes known to be mutated in myopathies as well as in related disorders, obtaining 98.8% target sequence coverage at 20 ×. Moreover, MyoPanel2 was able to detect 99.7% of 11,467 known mutations responsible for neuromuscular disorders. We have then used several quality control parameters to compare performance of the targeted exome approach with that of whole exome sequencing. The results of this pilot study of 140 DNA samples suggest that targeted exome sequencing approach is an efficient genetic diagnostic test for most neuromuscular diseases.

8.
J Neuromuscul Dis ; 2(3): 281-290, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858744

RESUMO

Dysferlinopathies are a family of disabling muscular dystrophies with LGMD2B and Miyoshi myopathy as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for a subset of patients with dysferlinopathies. Such an approach aims to rescue functional proteins when targeting modular proteins and specific tissues.We sought to evaluate the dysferlin functional recovery following exon 32 skipping in the cells of affected patients. Exon skipping efficacy was characterized at several levels by use of in vitro myotube formation assays and quantitative membrane repair and recovery tests. Data obtained from these assessments confirmed that dysferlin function is rescued by quasi-dysferlin expression in treated patient cells, supporting the case for a therapeutic antisense-based trial in a subset of dysferlin-deficient patients.

9.
Eur J Hum Genet ; 22(8): 1002-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24169522

RESUMO

Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele.


Assuntos
Contratura/genética , Retardo do Crescimento Fetal/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação , Progéria/genética , Anormalidades da Pele/genética , Alelos , Substituição de Aminoácidos , Contratura/diagnóstico , Análise Mutacional de DNA , Éxons , Feminino , Retardo do Crescimento Fetal/diagnóstico , Efeito Fundador , Estudos de Associação Genética , Humanos , Íntrons , Masculino , Linhagem , Progéria/diagnóstico , Sítios de Splice de RNA , Anormalidades da Pele/diagnóstico
11.
Sci Transl Med ; 2(50): 50ra69, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861509

RESUMO

Dysferlinopathies are autosomal recessive, progressive muscle dystrophies caused by mutations in DYSF, leading to a loss or a severe reduction of dysferlin, a key protein in sarcolemmal repair. Currently, no etiological treatment is available for patients affected with dysferlinopathy. As for other muscular dystrophies, gene therapy approaches based on recombinant adeno-associated virus (rAAV) vectors are promising options. However, because dysferlin messenger RNA is far above the natural packaging size of rAAV, full-length dysferlin gene transfer would be problematic. In a patient presenting with a late-onset moderate dysferlinopathy, we identified a large homozygous deletion, leading to the production of a natural "minidysferlin" protein. Using rAAV-mediated gene transfer into muscle, we demonstrated targeting of the minidysferlin to the muscle membrane and efficient repair of sarcolemmal lesions in a mouse model of dysferlinopathy. Thus, as previously demonstrated in the case of dystrophin, a deletion mutant of the dysferlin gene is also functional, suggesting that dysferlin's structure is modular. This minidysferlin protein could be used as part of a therapeutic strategy for patients affected with dysferlinopathies.


Assuntos
Terapia Genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Disferlina , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/terapia
12.
Am J Med Genet A ; 140(20): 2212-5, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16955409

RESUMO

Mutations in the X-encoded gene ATRX are known to give rise to syndromic mental retardation in male patients whereas female carriers show preferential inactivation of the mutated X chromosome and appear healthy. Here, we describe a 4-year-old girl with typical features of ATRX syndrome, carrying the recurrent R246C mutation of ATRX. We show that her pattern of X-inactivation is totally skewed and that her active X chromosome which harbors the ATRX mutation, was maternally inherited. To our knowledge, this is the first report of ATRX syndrome in a female patient. Since she was born after in vitro fertilization (IVF), we propose a possible link between assisted reproduction technologies (ART) and the unexpected X chromosome methylation pattern that we observed.


Assuntos
DNA Helicases/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Inativação do Cromossomo X/genética , Talassemia alfa/genética , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/genética , Repetições de Trinucleotídeos/genética , Proteína Nuclear Ligada ao X , Talassemia alfa/patologia
13.
New Phytol ; 165(1): 317-28, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15720643

RESUMO

Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. Sixty strains of P. fluorescens were isolated from the bulk soil of a forest nursery, the ectomycorrhizosphere and the ectomycorrhizas of the Douglas fir (Pseudostuga menziesii) seedlings-Laccaria bicolor S238N. They were characterized in vitro with the following criteria: ARDRA, phosphate solubilization, siderophore, HCN and AIA production, genes of N2-fixation and antibiotic synthesis, in vitro confrontation with a range of phytopathogenic and ectomycorrhizal fungi, effect on the Douglas fir-L. bicolor symbiosis. For most of these criteria, we demonstrated that the ectomycorrhizosphere significantly structures the P. fluorescens populations and selects strains potentially beneficial to the symbiosis and to the plant. This prompts us to propose the ectomycorrhizal symbiosis as a true microbial complex where multitrophic interactions take place. Moreover it underlines the fact that this symbiosis has an indirect positive effect on plant growth, via its selective pressure on bacterial communities, in addition to its known direct positive effect.


Assuntos
Basidiomycota/fisiologia , Micorrizas/fisiologia , Pseudomonas fluorescens/fisiologia , Pseudotsuga/microbiologia , Microbiologia do Solo , Basidiomycota/crescimento & desenvolvimento , Genótipo , Cianeto de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Dinâmica Populacional , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sideróforos/metabolismo , Simbiose/fisiologia
14.
Hum Mol Genet ; 14(11): 1503-13, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15843403

RESUMO

Restrictive dermopathy (RD) is characterized by intrauterine growth retardation, tight and rigid skin with prominent superficial vessels, bone mineralization defects, dysplastic clavicles, arthrogryposis and early neonatal death. In two patients affected with RD, we recently reported two different heterozygous splicing mutations in the LMNA gene, leading to the production and accumulation of truncated Prelamin A. In other patients, a single nucleotide insertion was identified in ZMPSTE24. This variation is located in a homopolymeric repeat of thymines and introduces a premature termination codon. ZMPSTE24 encodes an endoprotease essential for the post-translational cleavage of the Lamin A precursor and the production of mature Lamin A. However, the autosomal recessive inheritance of RD suggested that a further molecular defect was present either in the second ZMPSTE24 allele or in another gene involved in Lamin A processing. Here, we report new findings in RD linked to ZMPSTE24 mutations. Ten RD patients were analyzed including seven from a previous series and three novel patients. All were found to be either homozygous or compound heterozygous for ZMPSTE24 mutations. We report three novel 'null' mutations as well as the recurrent thymine insertion. In all cases, we find a complete absence of both ZMPSTE24 and mature Lamin A associated with Prelamin A accumulation. Thus, RD is either a primary or a secondary laminopathy, caused by dominant de novo LMNA mutations or, more frequently, recessive null ZMPSTE24 mutations, most of which lie in a mutation hotspot within exon 9. The accumulation of truncated or normal length Prelamin A is, therefore, a shared pathophysiological feature in recessive and dominant RD. These findings have an important impact on our knowledge of the pathophysiology in Progeria and related disorders and will help direct the development of therapeutic approaches.


Assuntos
Anormalidades Múltiplas/genética , Genes Recessivos , Lipoproteínas/genética , Proteínas de Membrana/genética , Metaloproteases/genética , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Dermatopatias/genética , Anormalidades Múltiplas/metabolismo , Sequência de Bases , Códon de Terminação , Primers do DNA , Humanos , Imuno-Histoquímica , Recém-Nascido , Lamina Tipo A , Metaloendopeptidases , Mutação , Reação em Cadeia da Polimerase , Dermatopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa