Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 239(1): 132-145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37010093

RESUMO

The control of starch granule initiation in plant leaves is a complex process that requires active enzymes like Starch Synthase 4 and 3 (SS4 or SS3) and several noncatalytic proteins such as Protein Involved in starch Initiation 1 (PII1). In Arabidopsis leaves, SS4 is the main enzyme that control starch granule initiation, but in its absence, SS3 partly fulfills this function. How these proteins collectively act to control the initiation of starch granules remains elusive. PII1 and SS4 physically interact, and PII1 is required for SS4 to be fully active. However, Arabidopsis mutants lacking SS4 or PII1 still accumulate starch granules. Combining pii1 KO mutation with either ss3 or ss4 KO mutations provide new insights of how the remaining starch granules are synthesized. The ss3 pii1 line still accumulates starch, while the phenotype of ss4 pii1 is stronger than that of ss4. Our results indicate first that SS4 initiates starch granule synthesis in the absence of PII1 albeit being limited to one large lenticular granule per plastid. Second, that if in the absence of SS4, SS3 is able to initiate starch granules with low efficiency, this ability is further reduced with the additional absence of PII1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sintase do Amido , Arabidopsis/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Sintase do Amido/genética , Folhas de Planta/metabolismo , Mutação/genética
2.
New Phytol ; 221(1): 356-370, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055112

RESUMO

The initiation of starch granule formation is still poorly understood. However, the soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthesize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast two-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of the starch initiation process and accumulate, on average, one starch granule per plastid instead of the five to seven granules found in plastids of wild-type plants. These granules are larger than in wild-type, and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in the starch priming process in Arabidopsis leaves through interaction with SS4.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Amido/metabolismo , Amilopectina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Microscopia Eletrônica de Varredura , Mutação , Cadeias Pesadas de Miosina/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plastídeos/genética , Plastídeos/metabolismo , Amido/genética , Amido/ultraestrutura , Sintase do Amido/genética , Sintase do Amido/metabolismo
3.
Plant Cell Environ ; 39(7): 1432-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26715025

RESUMO

Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Arabidopsis/metabolismo , Glucanos/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Arabidopsis/genética , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glucanos/ultraestrutura , Plantas Geneticamente Modificadas/genética
4.
Front Plant Sci ; 14: 1201386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324674

RESUMO

Starch-branching enzymes (BEs) are essential for starch synthesis in both plants and algae where they influence the architecture and physical properties of starch granules. Within Embryophytes, BEs are classified as type 1 and type 2 depending on their substrate preference. In this article, we report the characterization of the three BE isoforms encoded in the genome of the starch producing green algae Chlamydomonas reinhardtii: two type 2 BEs (BE2 and BE3) and a single type 1 BE (BE1). Using single mutant strains, we analyzed the consequences of the lack of each isoform on both transitory and storage starches. The transferred glucan substrate and the chain length specificities of each isoform were also determined. We show that only BE2 and BE3 isoforms are involved in starch synthesis and that, although both isoforms possess similar enzymatic properties, BE3 is critical for both transitory and storage starch metabolism. Finally, we propose putative explanations for the strong phenotype differences evidenced between the C. reinhardtii be2 and be3 mutants, including functional redundancy, enzymatic regulation or alterations in the composition of multimeric enzyme complexes.

5.
Am J Bot ; 99(2): e49-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268226

RESUMO

PREMISE OF THE STUDY: Arabidopsis halleri is a model species to study the adaptation of plants to soils contaminated by zinc, cadmium, and lead. To provide a neutral genetic background with which adaptive genetic markers could be compared, we developed highly polymorphic neutral microsatellite markers. METHODS AND RESULTS: Using a microsatellite-enriched library method, we identified 120 microsatellite loci for quantitative trait locus (QTL) mapping analysis, of which eight primer pairs were developed in a single multiplex for population genetic studies. Analyses were performed on 508 individuals from 26 populations. All loci were polymorphic with six to 23 alleles per locus. Genetic diversity varied between 0.56 and 0.76. CONCLUSIONS: Our results demonstrated the value of these eight microsatellite markers to investigate neutral population genetic structure in A. halleri. To increase the resolution of population genetic analyses, we suggest adding them to the 11 markers previously developed independently.


Assuntos
Adaptação Biológica , Arabidopsis/genética , Núcleo Celular/genética , Repetições de Microssatélites , Locos de Características Quantitativas , Alelos , Arabidopsis/química , Cádmio/química , Primers do DNA/genética , DNA de Plantas/genética , Variação Genética , Heterozigoto , Chumbo/química , Poluentes do Solo/química , Especificidade da Espécie , Zinco/química
6.
New Phytol ; 187(2): 355-367, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487314

RESUMO

SUMMARY: This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Meio Ambiente , Locos de Características Quantitativas/genética , Zinco/metabolismo , Análise de Variância , Arabidopsis/efeitos dos fármacos , Mapeamento Cromossômico , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Poluentes Ambientais/farmacologia , Marcadores Genéticos , Característica Quantitativa Herdável
7.
Front Plant Sci ; 10: 1075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552073

RESUMO

Starch granules that accumulate in the plastids of plants vary in size, shape, phosphate, or protein content according to their botanical origin. Depending on their size, the applications in food and nonfood industries differ. Being able to master starch granule size for a specific plant, without alteration of other characteristics (phosphate content, protein content, etc.), is challenging. The development of a simple and effective screening method to determine the size and shape of starch granules in a plant population is therefore of prime interest. In this study, we propose a new method, NegFluo, that combines negative confocal autofluorescence imaging in leaf and machine learning (ML)-based image analysis. It provides a fast, automated, and easy-to-use pipeline for both in situ starch granule imaging and its morphological analysis. NegFluo was applied to Arabidopsis leaves of wild-type and ss4 mutant plants. We validated its accuracy by comparing morphological quantifications using NegFluo and state-of-the-art methods relying either on starch granule purification or on preparation-intensive electron microscopy combined with manual image analysis. NegFluo thus opens the way to fast in situ analysis of starch granules.

8.
Front Plant Sci ; 9: 746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963063

RESUMO

Starch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines.

9.
J Phycol ; 45(5): 1072-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27032352

RESUMO

The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse-amplitude-modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv /Fm ), the effective PSII efficiency (ΦPSII ), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of P-I parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self-shading (in relation to algal biomass) could have influenced photosynthesis in older communities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa