RESUMO
Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.
RESUMO
RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Assuntos
Proteína Quinase CDC2 , Carcinógenos , Melanoma , Estabilidade de RNA , RNA Nuclear , Neoplasias Cutâneas , Animais , Proteína Quinase CDC2/genética , Melanoma/genética , Mutação , RNA Nuclear/genética , Neoplasias Cutâneas/genética , Peixe-Zebra , HumanosRESUMO
This paper reviews the current evidence for the association between socioeconomic status and stroke incidence, survival, mortality, and other outcomes. The evidence is strongest for mortality and incidence of stroke, with high rates of stroke in low socioeconomic groups being a consistent finding. Low socioeconomic groups also have lower survival and greater stroke severity than high socioeconomic groups, although there is less evidence for this association. The mechanisms through which socioeconomic status affects stroke risk and outcomes are unclear but some studies report that differences in risk-factor prevalence could account for some of the variation. We discuss the implications of these findings and make recommendations for future research. Studies using prospective population-based methods with improved control for confounding factors are needed to confirm or refute these associations. Understanding the causal associations between socioeconomic status and stroke will allow interventions to be appropriately targeted and assessed.