Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Lipídeos/química , Lipossomos/metabolismo , Lipossomos/química , Modelos Moleculares , Nanoestruturas/química
2.
Trends Biochem Sci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851904

RESUMO

Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca2+-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.

3.
Nature ; 590(7846): 509-514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568813

RESUMO

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1-3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4-8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9-11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the 'force-from-lipids' model for MscS mechanosensation4,11.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Membranas Artificiais , Fosfatidilcolinas/metabolismo , Detergentes/farmacologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Canais Iônicos/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Modelos Moleculares , Mutação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Conformação Proteica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475213

RESUMO

The bacterial mechanosensitive channel of small conductance (MscS) has been extensively studied to understand how mechanical forces are converted into the conformational changes that underlie mechanosensitive (MS) channel gating. We showed that lipid removal by ß-cyclodextrin can mimic membrane tension. Here, we show that all cyclodextrins (CDs) can activate reconstituted Escherichia coli MscS, that MscS activation by CDs depends on CD-mediated lipid removal, and that the CD amount required to gate MscS scales with the channel's sensitivity to membrane tension. Importantly, cholesterol-loaded CDs do not activate MscS. CD-mediated lipid removal ultimately causes MscS desensitization, which we show is affected by the lipid environment. While many MS channels respond to membrane forces, generalized by the "force-from-lipids" principle, their different molecular architectures suggest that they use unique ways to convert mechanical forces into conformational changes. To test whether CDs can also be used to activate other MS channels, we chose to investigate the mechanosensitive channel of large conductance (MscL) and demonstrate that CDs can also activate this structurally unrelated channel. Since CDs can open the least tension-sensitive MS channel, MscL, they should be able to open any MS channel that responds to membrane tension. Thus, CDs emerge as a universal tool for the structural and functional characterization of unrelated MS channels.


Assuntos
Ciclodextrinas/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Membrana Celular/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas , Tensão Superficial
5.
J Physiol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098265

RESUMO

The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+ -dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction. KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+ -dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties. The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells. Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes.

6.
Biochem Soc Trans ; 51(5): 1897-1906, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772664

RESUMO

Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.


Assuntos
Integrinas , Neoplasias , Humanos , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Adesões Focais/metabolismo , Canais Iônicos/metabolismo
7.
Eur Biophys J ; 51(2): 135-146, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286429

RESUMO

Mechanical stimuli such as tension, compression, and shear stress play critical roles in the physiological functions of red blood cells (RBCs) and their homeostasis, ATP release, and rheological properties. Intracellular calcium (Ca2+) mobilization reflects RBC mechanosensing as they transverse the complex vasculature. Emerging studies have demonstrated the presence of mechanosensitive Ca2+ permeable ion channels and their function has been implicated in the regulation of RBC volume and deformability. However, how these mechanoreceptors trigger Ca2+ influx and subsequent cellular responses are still unclear. Here, we introduce a fluorescence-coupled micropipette aspiration assay to examine RBC mechanosensing at the single-cell level. To achieve a wide range of cell aspirations, we implemented and compared two negative pressure adjusting apparatuses: a homemade water manometer (- 2.94 to 0 mmH2O) and a pneumatic high-speed pressure clamp (- 25 to 0 mmHg). To visualize Ca2+ influx, RBCs were pre-loaded with an intensiometric probe Cal-520 AM, then imaged under a confocal microscope with concurrent bright-field and fluorescent imaging at acquisition rates of 10 frames per second. Remarkably, we observed the related changes in intracellular Ca2+ levels immediately after aspirating individual RBCs in a pressure-dependent manner. The RBC aspirated by the water manometer only displayed 1.1-fold increase in fluorescence intensity, whereas the RBC aspirated by the pneumatic clamp showed up to threefold increase. These results demonstrated the water manometer as a gentle tool for cell manipulation with minimal pre-activation, while the high-speed pneumatic clamp as a much stronger pressure actuator to examine cell mechanosensing directly. Together, this multimodal platform enables us to precisely control aspiration and membrane tension, and subsequently correlate this with intracellular calcium concentration dynamics in a robust and reproducible manner.


Assuntos
Cálcio , Deformação Eritrocítica , Cálcio/metabolismo , Eritrócitos , Canais Iônicos/metabolismo , Transdução de Sinais
8.
Annu Rev Physiol ; 80: 71-93, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29195054

RESUMO

Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mecanorreceptores/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Osmorregulação/fisiologia
9.
J Cell Physiol ; 236(4): 2976-2987, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959903

RESUMO

Mechanosensitive ion channels mediate endothelial responses to blood flow and orchestrate their physiological function in response to hemodynamic forces. In this study, we utilized microfluidic technologies to study the shear-induced sensitization of endothelial Piezo-1 to its selective agonist, Yoda-1. We demonstrated that shear stress-induced sensitization is brief and can be impaired when exposing aortic endothelial cells to low and proatherogenic levels of shear stress. Our results suggest that shear stress-induced sensitization of Piezo-1 to Yoda-1 is independent of cell-cell adhesion and is mediated by the PI3K-AKT signaling pathway. We also found that shear stress increases the membrane density of Piezo-1 channels in endothelial cells. To further confirm our findings, we performed experiments using a carotid artery ligation mouse model and demonstrated that transient changes in blood-flow pattern, resulting from a high-degree ligation of the mouse carotid artery alters the distribution of Piezo-1 channels across the endothelial layer. These results suggest that shear stress influences the function of Piezo-1 channels via changes in membrane density, providing a new model of shear-stress sensitivity for Piezo-1 ion channel.


Assuntos
Aorta/citologia , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Estresse Mecânico , Cálcio/metabolismo , Adesão Celular , Citoesqueleto/metabolismo , Dinaminas/metabolismo , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/metabolismo , Reologia , Transdução de Sinais , Tiadiazóis/metabolismo
10.
J Cell Sci ; 132(23)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722978

RESUMO

TRP channels of the transient receptor potential ion channel superfamily are involved in a wide variety of mechanosensory processes, including touch sensation, pain, blood pressure regulation, bone loading and detection of cerebrospinal fluid flow. However, in many instances it is unclear whether TRP channels are the primary transducers of mechanical force in these processes. In this study, we tested stretch activation of eleven TRP channels from six mammalian subfamilies. We found that these TRP channels were insensitive to short membrane stretches in cellular systems. Furthermore, we purified TRPC6 and demonstrated its insensitivity to stretch in liposomes, an artificial bilayer system free from cellular components. Additionally, we demonstrated that, when expressed in C. elegans neurons, mouse TRPC6 restores the mechanoresponse of a touch insensitive mutant but requires diacylglycerol for activation. These results strongly suggest that the mammalian members of the TRP ion channel family are insensitive to tension induced by cell membrane stretching and, thus, are more likely to be activated by cytoplasmic tethers or downstream components and to act as amplifiers of cellular mechanosensory signaling cascades.


Assuntos
Canal de Cátion TRPC6/química , Animais , Células CHO , Caenorhabditis elegans/metabolismo , Cricetulus , Eletrofisiologia , Células HEK293 , Células HeLa , Humanos , Mecanotransdução Celular/fisiologia , Neurônios/metabolismo , Proteolipídeos/química
11.
Small ; 17(3): e2005759, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326190

RESUMO

Cellular processes including adhesion, migration, and differentiation are governed by the distinct mechanical properties of each cell. Importantly, the mechanical properties of individual cells can vary depending on local physical and biochemical cues in a time-dependent manner resulting in significant inter-cell heterogeneity. While several different methods have been developed to interrogate the mechanical properties of single cells, throughput to capture this heterogeneity remains an issue. Here, single-cell, high-throughput characterization of adherent cells is demonstrated using acoustic force spectroscopy (AFS). AFS works by simultaneously, acoustically driving tens to hundreds of silica beads attached to cells away from the cell surface, allowing the user to measure the stiffness of adherent cells under multiple experimental conditions. It is shown that cells undergo marked changes in viscoelasticity as a function of temperature, by altering the temperature within the AFS microfluidic circuit between 21 and 37 °C. In addition, quantitative differences in cells exposed to different pharmacological treatments specifically targeting the membrane-cytoskeleton interface are shown. Further, the high-throughput format of the AFS is utilized to rapidly probe, in excess of 1000 cells, three different cell lines expressing different levels of a mechanosensitive protein, Piezo1, demonstrating the ability to differentiate between cells based on protein expression levels.


Assuntos
Acústica , Fenômenos Mecânicos , Citoesqueleto , Elasticidade , Microfluídica , Viscosidade
12.
Biophys J ; 119(8): 1683-1697, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32949489

RESUMO

Touch, hearing, and blood pressure regulation require mechanically gated ion channels that convert mechanical stimuli into electrical currents. One such channel is Piezo1, which plays a key role in the transduction of mechanical stimuli in humans and is implicated in diseases, such as xerocytosis and lymphatic dysplasia. There is building evidence that suggests Piezo1 can be regulated by the membrane environment, with the activity of the channel determined by the local concentration of lipids, such as cholesterol and phosphoinositides. To better understand the interaction of Piezo1 with its environment, we conduct simulations of the protein in a complex mammalian bilayer containing more than 60 different lipid types together with electrophysiology and mutagenesis experiments. We find that the protein alters its local membrane composition, enriching specific lipids and forming essential binding sites for phosphoinositides and cholesterol that are functionally relevant and often related to Piezo1-mediated pathologies. We also identify a number of key structural connections between the propeller and pore domains located close to lipid-binding sites.


Assuntos
Anemia Hemolítica Congênita , Canais Iônicos , Animais , Colesterol , Hidropisia Fetal , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular , Camundongos , Fosfatidilinositóis
14.
Curr Top Membr ; 86: 83-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33837699

RESUMO

The rapid progress in mechanobiology has brought together many scientific and engineering disciplines to work hand in hand toward better understanding of the role that mechanical force plays in functioning and evolution of different forms of life. New tools designed by engineers helped to develop new methods and techniques for investigation of mechanical properties of biological cells and tissues. This multidisciplinary approach made it clear that cell mechanics is tightly linked to intracellular signaling pathways, which directly regulate gene expression in response to mechanical stimuli originating outside or inside the cells. Mechanical stimuli act on mechanoreceptors which convert these stimuli into intracellular signals. In this chapter, we review the current knowledge about cell mechanics and the role cell mechanics plays for the function of mechanosensitive ion channels as a special class of mechanoreceptors functioning as molecular transducers of mechanical stimuli on a millisecond timescale.


Assuntos
Mecanorreceptores , Mecanotransdução Celular , Membrana Celular , Transdução de Sinais
15.
Biochem Soc Trans ; 47(6): 1833-1842, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31754715

RESUMO

PIEZO proteins are large eukaryotic mechanically-gated channels that function as homotrimers. The basic PIEZO1 structure has been elucidated by CryoEM and it assembles into a protein-lipid dome. A curved lipid region allows for the transition to the lipid bilayer from the dome (footprint). Gating PIEZO1 is mediated by bilayer tension that induces an area change in the lipid dome. The footprint region is thought to be energetically important for changes in lateral tension. Amphipathic molecules can modulate channel function beyond the intrinsic gating properties of PIEZO1. As a result, molecules that modify lipid properties within the lipid-channel complex (footprint and dome) will profoundly affect channel kinetics. In this review, we summarize the effects some amphipathic molecules have on the lipid bilayer and PIEZO1 function. PIEZO1 has three states, closed, open and inactivated and amphipathic molecules influence these transitions. The amphipathic peptide, GsMTx4, inhibits the closed to open transition. While saturated fatty acids also prevent PIEZO1 gating, the effect is mediated by stiffening the lipids, presumably in both the dome and footprint region. Polyunsaturated fatty acids can increase disorder within the lipid-protein complex affecting channel kinetics. PIEZO1 can also form higher-ordered structures that confers new kinetic properties associated with clustered channels. Cholesterol-rich domains house PIEZO1 channels, and depletion of cholesterol causes a breakdown of those domains with changes to channel kinetics and channel diffusion. These examples underscore the complex effects lipophilic molecules can have on the PIEZO1 lipid dome structure and thus on the mechanical response of the cell.


Assuntos
Canais Iônicos/metabolismo , Animais , Colesterol/isolamento & purificação , Humanos , Ativação do Canal Iônico , Cinética , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular
17.
Heart Lung Circ ; 27(9): 1093-1098, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29706494

RESUMO

In endurance athletes, prolonged high intensity exercise participation can have deleterious effects on the myocardium with subsequent structural and electrical remodelling. In a subset of athletes, there is a predilection for atrial involvement and the risk of atrial fibrillation (AF) is increased. The mechanisms underpinning exercise-induced atrial cardiomyopathy have yet to be fully elucidated and the contribution of an individual's genetic makeup is unknown. Some athletes may have rare genetic variants that are sufficient to cause AF irrespective of exercise exposure. In AF-causing variant carriers, the additional haemodynamic stress of exercise on atrial structure and function might accelerate or increase the severity of disease. Variants in genes that lack known links to AF may indirectly promote an arrhythmogenic substrate by affecting threshold levels for exercise-induced myocardial damage and remodelling responses, or by effects on AF-associated co-morbidities, sinus node function, and autonomic nervous system tone. Given the exquisite stress-sensitivity of the atria, mechanosensitive ion channels could plausibly have a key role in mediating exercise effects on atrial structure and function. Knowing an athlete's profile of genetic variants may be useful for AF risk stratification and have implications for clinical management. Pre-participation genetic testing may influence sports choices and facilitate AF prevention.


Assuntos
Atletas , Fibrilação Atrial/genética , Remodelamento Atrial , Cardiomiopatias/complicações , Exercício Físico , Átrios do Coração/fisiopatologia , Fibrilação Atrial/etiologia , Cardiomiopatias/genética , Humanos
18.
Proc Natl Acad Sci U S A ; 111(38): 13864-9, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201991

RESUMO

The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace's law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension is seen at the apex of the patch and the lowest tension is encountered near the pipette wall. More importantly, there is only a negligible difference between the stress profiles of the outer and inner monolayers in the cell-attached configuration, whereas a substantial difference (∼30%) is observed in the excised configuration. Our results have far-reaching consequences for the biophysical studies of MS channels and ion channels in general, using the patch-clamp technique, and begin to unravel the difference in activity seen between MS channels in different experimental paradigms.


Assuntos
Bicamadas Lipídicas/química , Membranas Artificiais , Modelos Químicos , Reologia/métodos
19.
FASEB J ; 29(10): 4334-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116700

RESUMO

The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/química , Canais Iônicos/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Técnicas de Patch-Clamp , Esferoplastos/efeitos dos fármacos , Esferoplastos/metabolismo , Esferoplastos/fisiologia , Fatores de Tempo , Trifluoretanol/farmacologia
20.
Basic Res Cardiol ; 109(2): 402, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24477916

RESUMO

B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and (Cys-18)-atrial natriuretic factor (4-23) amide (C-ANF), are cytoprotective under conditions of ischemia-reperfusion, limiting infarct size. ATP-sensitive K(+) channel (KATP) opening is also cardioprotective, and although the KATP activation is implicated in the regulation of cardiac natriuretic peptide release, no studies have directly examined the effects of natriuretic peptides on cardiac KATP activity. Normoxic cardiomyocytes were patch clamped in the cell-attached configuration to examine sarcolemmal KATP (sKATP) activity. The KATP opener pinacidil (200 µM) increased the open probability of the patch (NPo; values normalized to control) at least twofold above basal value, and this effect was abolished by HMR1098 10 µM, a selective KATP blocker (5.23 ± 1.20 versus 0.89 ± 0.18; P < 0.001). We then examined the effects of BNP, CNP, C-ANF and 8Br-cGMP on the sKATP current. Bath application of BNP (≥10 nM) or CNP (≥0.01 nM) suppressed basal NPo (BNP: 1.00 versus 0.56 ± 0.09 at 10 nM, P < 0.001; CNP: 1.0 versus 0.45 ± 0.16, at 0.01 nM, P < 0.05) and also abolished the pinacidil-activated current at concentrations ≥10 nM. C-ANF (≥10 nM) enhanced KATP activity (1.00 versus 3.85 ± 1.13, at 100 nM, P < 0.05). The cGMP analog 8Br-cGMP 10 nM dampened the pinacidil-activated current (2.92 ± 0.60 versus 1.53 ± 0.32; P < 0.05). Natriuretic peptides modulate sKATP current in ventricular cardiomyocytes. This may be at least partially associated with their ability to augment intracellular cGMP concentrations via NPR-A/B, or their ability to bind NPR-C with high affinity. Although the mechanism of modulation requires elucidation, these preliminary data give new insights into the relationship between natriuretic peptide signaling and sKATP in the myocardium.


Assuntos
Canais KATP/fisiologia , Miócitos Cardíacos/fisiologia , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Animais , Ventrículos do Coração/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais KATP/genética , Canais KATP/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/farmacologia , Peptídeo Natriurético Tipo C/farmacologia , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa