RESUMO
Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H.â pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H.â pylori strains which encode the cag Typeâ IV Secretion System (cagâ T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro-inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H.â pylori infection, the host produces a variety of antimicrobial molecules, including the iron-binding glycoprotein, lactoferrin. Our work shows that apo-lactoferrin exerts antimicrobial activity against H.â pylori under iron-limited conditions, while holo-lactoferrin enhances bacterial growth. Culturing H.â pylori in the presence of holo-lactoferrin prior to co-culture with gastric epithelial cells, results in repression of the cagâ T4SS activity. Concomitantly, a decrease in biogenesis of cagâ T4SS pili at the host-pathogen interface was observed under these culture conditions by high-resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro-inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H.â pylori-related disease.
Assuntos
Helicobacter pylori/efeitos dos fármacos , Lactoferrina/farmacologia , Sistemas de Secreção Tipo IV/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Gerbillinae , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Imunidade Inata , Interleucina-8/metabolismo , Ferro/metabolismo , Lactoferrina/química , Lactoferrina/metabolismo , Lactoferrina/uso terapêutico , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Isoformas de Proteínas/uso terapêutico , Sistemas de Secreção Tipo IV/antagonistas & inibidoresRESUMO
This Account describes the risky proposition of organizing a multidisciplinary team to interrogate a challenging problem in chemical biology: characterizing how human milk, at the molecular level, protects infants from infectious diseases. At the outset, our initial hypothesis was that human milk oligosaccharides (HMOs) possess antimicrobial and antivirulence activities. Early on, we discovered that HMOs do indeed modulate bacterial growth and biofilm production for numerous bacterial pathogens. In light of this discovery, three priorities emerged for our program moving forward. The first was to decode the mode of action behind this activity. The second was to decipher the functional effects of HMO structural diversity as there are ca. 200 unique HMOs present in human milk. Finally, we set our sights on discovering novel uses for HMOs as we believed this would uniquely position our team to achieve a major breakthrough in human health and wellness. Through a combination of fractionation techniques, chemical synthesis, and industrial partnerships, we have determined the identities of several HMOs with potent antimicrobial activity against the important neonate pathogen Group B Streptococcus (Group B Strep; GBS). In addition to a structure-activity relationship (SAR) study, we observed that HMOs are effective adjuvants for intracellular-targeting antibiotics against GBS. This included two antibiotics that GBS has evolved resistance to. At their half maximal inhibitory concentration (IC50), heterogeneous HMOs reduced the minimum inhibitory concentration (MIC) of select antibiotics by up to 32-fold. Similarly, we observed that HMOs potentiate the activity of polymyxin B (Gram-negative-selective antibiotic) against GBS (Gram-positive species). Based on these collective discoveries, we hypothesized that HMOs function by increasing bacterial cell permeability, which would be a novel mode of action for these molecules. This hypothesis was validated as HMOs were found to increase membrane permeability by around 30% compared to an untreated control. The question that remains is how exactly HMOs interact with bacterial membranes to induce permeability changes (i.e., through promiscuous insertion into the bilayer, engagement of proteins involved in membrane synthesis, or HMO-capsular polysaccharide interactions). Our immediate efforts in this regard are to apply chemoproteomics to identify the molecular target(s) of HMOs. These investigations are enabled through manipulation of HMOs produced via total synthesis or enzymatic and whole-cell microbial biotransformation.
Assuntos
Antibacterianos/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/isolamento & purificação , Adjuvantes Farmacêuticos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Sequência de Carboidratos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Streptococcus agalactiae/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Alongside Edward, Lemieux was among the earliest researchers studying negative hyperconjugation (i.e., the anomeric effect) or the preference for gauche conformations about the C1-O5 bond in carbohydrates. Lemieux also studied an esoteric, if not controversial, theory known as the reverse anomeric effect (RAE). This theory is used to rationalize scenarios where predicted anomeric stabilization does not occur. One such example is the Kochetkov amination where reducing end amines exist solely as the ß-anomer. Herein, we provide a brief account of Lemieux's contributions to the field of stereoelectronics and apply this knowledge toward the synthesis of ß-amino human milk oligosaccharides (ßΑ-HMOs). These molecules were evaluated for their ability to inhibit growth and biofilm production in Group B Streptococcus (GBS) and Staphylococcus aureus. While the parent HMOs lacked antimicrobial and antibiofilm activity, their ß-amino derivatives significantly inhibited biofilm formation in both species. Field emission gun-scanning single electron microscopy (FEG-SEM) revealed that treatment with ß-amino HMOs significantly inhibits bacterial adherence and eliminates the ability of both microbes to form biofilms.
Assuntos
Biofilmes , Leite Humano , Microscopia Eletrônica de Varredura , Oligossacarídeos/farmacologia , Staphylococcus aureusRESUMO
Human milk oligosaccharides (HMOs) possess antimicrobial activity against a number of bacterial pathogens. HMOs prevent infection by serving as decoy receptors that competitively bind pathogens thus preventing pathogen attachment to host epithelial cell receptors. In a second mechanistic pathway, we recently demonstrated that heterogenous HMO extracts exert antimicrobial action against Group B Streptococcus by increasing cellular permeability. As human milk contains ca. 200 unique glycans however, our understanding of which pharmacophores are most important to HMO antimicrobial activity remains immature. In the present study, we describe the first evaluation of the antimicrobial and antibiofilm activities of five structurally defined, ubiquitous sialylated HMOs against Group B Streptococcus.
Assuntos
Antibacterianos/farmacologia , Oligossacarídeos/farmacologia , Ácidos Siálicos/farmacologia , Streptococcus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Configuração de Carboidratos , Humanos , Testes de Sensibilidade Microbiana , Leite Humano/química , Oligossacarídeos/química , Ácidos Siálicos/químicaRESUMO
Group B Streptococcus (GBS) is one of the leading infection-related causes of adverse maternal and neonatal outcomes. This includes chorioamnionitis, which leads to preterm ruptures of membranes and can ultimately result in preterm or stillbirth. Infection can also lead to maternal and neonatal sepsis that may contribute to mortality. Currently, treatment for GBS infection include a bolus of intrapartum antibiotic prophylaxis to mothers testing positive for GBS colonization during late pregnancy. Lactoferrin is an antimicrobial peptide expressed in human breast milk, mucosal epithelia, and secondary granules of neutrophils. We previously demonstrated that lactoferrin possesses antimicrobial and antibiofilm properties against several strains of GBS. This is largely due to the ability of lactoferrin to bind and sequester iron. We expanded upon that study by assessing the effects of purified human breast milk lactoferrin against a panel of phenotypically and genetically diverse isolates of GBS. Of the 25 GBS isolates screened, lactoferrin reduced bacterial growth in 14 and biofilm formation in 21 strains. Stratifying the data, we observed that colonizing strains were more susceptible to the growth inhibition activity of lactoferrin than invasive isolates at lactoferrin concentrations between 250-750 µg/mL. Treatment with 750 µg/mL of lactoferrin resulted in differences in bacterial growth and biofilm formation between discrete sequence types. Differences in bacterial growth were also observed between capsular serotypes 1a and III. Maternally isolated strains were more susceptible to lactoferrin with respect to bacterial growth, but not biofilm formation, compared to neonatal sepsis isolates. Finally, high biofilm forming GBS strains were more impacted by lactoferrin across all isolates tested. Taken together, this study demonstrates that lactoferrin possesses antimicrobial and antibiofilm properties against a wide range of GBS isolates, with maternally isolated colonizing strains being the most susceptible.
Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Antibacterianos/farmacologia , Biofilmes , Feminino , Humanos , Recém-Nascido , Lactoferrina/farmacologia , Leite Humano , GravidezRESUMO
Streptococcal species are Gram-positive bacteria responsible for a variety of disease outcomes including pneumonia, meningitis, endocarditis, erysipelas, necrotizing fasciitis, periodontitis, skin and soft tissue infections, chorioamnionitis, premature rupture of membranes, preterm birth, and neonatal sepsis. In response to streptococcal infections, the host innate immune system deploys a repertoire of antimicrobial and immune modulating molecules. One important molecule that is produced in response to streptococcal infections is lactoferrin. Lactoferrin has antimicrobial properties including the ability to bind iron with high affinity and sequester this important nutrient from an invading pathogen. Additionally, lactoferrin has the capacity to alter the host inflammatory response and contribute to disease outcome. This Review presents the most recent published work that studies the interaction between the host innate immune protein lactoferrin and the invading pathogen, Streptococcus.
Assuntos
Anti-Infecciosos , Nascimento Prematuro , Infecções Estreptocócicas , Feminino , Humanos , Imunidade , Recém-Nascido , Lactoferrina/metabolismo , Gravidez , Infecções Estreptocócicas/tratamento farmacológicoRESUMO
Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs' mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.
Assuntos
Farmacorresistência Bacteriana , Leite Humano/química , Oligossacarídeos/química , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/metabolismo , Trimetoprima/farmacologia , Antibacterianos/farmacologia , Humanos , Redes e Vias Metabólicas , Metabolômica , Espectrometria de Massas em TandemRESUMO
2'-Fucosyllactose (2'-FL) is a ubiquitous oligosaccharide in human milk. Importantly, this carbohydrate promotes the growth of several strains of Bifidobacteria, a class of beneficial gut commensal, and inhibits epithelial binding of pathogens. In light of these protective effects, we elected to evaluate the potential of 2'-FL to serve as an antibacterial agent against Group B Streptococcus (GBS). While 2'-FL was devoid of any substantial antimicrobial or antibiofilm activity, conversion of 2'-FL to its reducing end ß-amine provided a novel antibiofilm compound.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Oligossacarídeos/síntese química , Oligossacarídeos/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Configuração de Carboidratos , Oligossacarídeos/química , Streptococcus agalactiae/fisiologia , Relação Estrutura-AtividadeRESUMO
Staphylococcus aureus (S. aureus) is an asymptomatic colonizer of 30% of all human beings. While generally benign, antibiotic resistance contributes to the success of S. aureus as a human pathogen. Resistance is rapidly evolved through a wide portfolio of mechanisms including horizontal gene transfer and chromosomal mutation. In addition to traditional resistance mechanisms, a special feature of S. aureus pathogenesis is its ability to survive on both biotic and abiotic surfaces in the biofilm state. Due to this characteristic, S. aureus is a leading cause of human infection. Methicillin-resistant S. aureus (MRSA) in particular has emerged as a widespread cause of both community- and hospital-acquired infections. Currently, MRSA is responsible for 10-fold more infections than all multi-drug resistant (MDR) Gram-negative pathogens combined. Recently, MRSA was classified by the World Health Organization (WHO) as one of twelve priority pathogens that threaten human health. In this targeted mini-review, we discuss MRSA biofilm production, the relationship of biofilm production to antibiotic resistance, and front-line techniques to defeat the biofilm-resistance system.
RESUMO
Each year over 3 million people die from infectious diseases with most of these deaths being poor and young children who live in low- and middle-income countries. Infectious diseases emerge for a multitude of reasons. On the social front, reasons include a breakdown of public health standards, international travel, and immigration (for financial, civil, and social reasons). At the molecular level, the modern rise of infectious diseases is tied to the juxtaposition of drug-resistant pathogens and a lack of new antimicrobials. The consequence is the possibility that humankind will return to the preantibiotic era wherein millions of people will perish from what should be trivial illnesses. Given the stakes, it is imperative that the chemistry community take leadership in delivering new antibiotic leads for clinical development. We believe this can happen through innovation in two areas. First is the development of novel chemical scaffolds to treat infections caused by multidrug-resistant pathogens. The second area, which is not exclusive to the first, is the generation of antibiotics that do not cause collateral damage to the host or the host's microbiome. Both can be enabled through advances in chemical synthesis. It is with this general philosophy in mind that we hypothesized human milk oligosaccharides (HMOs) could serve as novel chemical scaffolds for antibacterial development. We provide herein a personal account of our laboratory's progress toward the goal of using HMOs as a defense against infectious diseases.
Assuntos
Doenças Transmissíveis/metabolismo , Resistência à Doença , Leite Humano , Oligossacarídeos/metabolismo , Antibacterianos/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/microbiologia , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno , Humanos , Leite Humano/química , Oligossacarídeos/química , SimbioseRESUMO
Human milk oligosaccharides (HMOs) possess antimicrobial and antibiofilm activity against Group B Streptococcus (GBS). HMOs were screened for their ability to potentiate antibiotic activity. We observed that HMOs potentiate the function of aminoglycosides, lincosamides, macrolides, and tetracyclines on a strain specific basis but not ß-lactams or glycopeptides that inhibit cell wall synthesis. These findings are notable as GBS has evolved high levels of resistance toward aminoglycosides, macrolides, and tetracyclines. Finally, HMOs potentiate the function of aminoglycosides against both Staphylococcus aureus and Acinetobacter baumannii. On the basis of these observations, we hypothesized that HMOs act by increasing membrane permeability. This hypothesis was evaluated using a bacterial membrane permeability assay which revealed that HMOs increase membrane permeability toward propidium iodide.
Assuntos
Antibacterianos/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Clindamicina/farmacologia , Eritromicina/farmacologia , Feminino , Gentamicinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus agalactiae/classificaçãoRESUMO
For newborns, human milk oligosaccharides (HMOs) serve as an important source of protection against bacterial pathogens. HMOs prevent infection by functioning as decoy receptors that bind pathogens to inhibit cellular adhesion. HMOs also play a protective role by acting as prebiotics that selectively promote the growth of symbiotic gut bacteria over pathogens. Fucosylated HMOs in particular are well-known for their roles as both decoy receptors and prebiotics. Recently, we discovered that HMOs possess antimicrobial activity against Group B Streptococcus (GBS) by increasing cellular permeability. HMO extracts from a single donor can contain over 100 different structures; however, studies using heterogeneous HMO mixtures do not provide insight into the specific structural requirements needed to achieve antimicrobial activity. In this study, we address this void by completing a structure activity study on the antimicrobial and antibiofilm activities of six neutral, fucosylated and five neutral, nonfucosylated HMOs against GBS. We determined that while the presence of fucose alone does not correlate to antimicrobial activity, the location and degree of fucosylation does play a key role in the antimicrobial activity of HMOs. Moreover, the antimicrobial and antibiofilm activities of single HMOs were found to be strain-specific. This further supports our vision of developing narrow-spectrum antibacterial agents against GBS.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Leite Humano/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Adulto , Biofilmes/efeitos dos fármacos , Feminino , Humanos , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Streptococcus agalactiae/fisiologiaRESUMO
In a previous study, we reported that human milk oligosaccharides (HMOs) isolated from five donor milk samples possessed antimicrobial and antibiofilm activity against Streptococcus agalactiae, also known as Group B Streptococcus or GBS. Herein, we present a broader evaluation of the antimicrobial and antibiofilm activity by screening HMOs from 14 new donors against three strains of GBS and two of the ESKAPE pathogens of particular interest to child health, Staphylococcus aureus and Acinetobacter baumannii. Growth and biofilm assays showed that HMOs from these new donors possessed antimicrobial and antibiofilm activity against all three strains of GBS, antibiofilm activity against methicillin-resistant S. aureus strain USA300, and antimicrobial activity against A. baumannii strain ATCC 19606.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Leite Humano/química , Oligossacarídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus agalactiae/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Feminino , Humanos , Testes de Sensibilidade Microbiana , Oligossacarídeos/isolamento & purificação , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus agalactiae/crescimento & desenvolvimentoRESUMO
Human milk oligosaccharides (HMOs) are the third largest macromolecular component of breast milk and offer infants numerous health benefits, most of which stem from the development of a healthy microbiome. Characterization, quantification, and chemical derivatization of HMOs remains a frontier issue in glycobiology due to the challenge of isolating appreciable quantities of homogenous HMOs from breast milk. Herein, we report the synthesis of the human milk tetrasaccharide lacto-N-tetraose (LNT). LNT is ubiquitous in human breast milk as it is a core structure common to longer-chain HMOs and many glycolipids.
Assuntos
Acetamidas/química , Leite Humano/química , Oligossacarídeos/síntese química , Piranos/química , Configuração de Carboidratos , Sequência de Carboidratos , Feminino , Glicômica , Humanos , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Professional health bodies such as the World Health Organization (WHO), the American Academy of Pediatrics (AAP), and the U.S. Department of Health and Human Services (HHS) recommend breast milk as the sole source of food during the first year of life. This position recognizes human milk as being uniquely suited for infant nutrition. Nonetheless, most neonates in the West are fed alternatives by 6 months of age. Although inferior to human milk in most aspects, infant formulas are able to promote effective growth and development. However, while breast-fed infants feature a microbiota dominated by bifidobacteria, the bacterial flora of formula-fed infants is usually heterogeneous with comparatively lower levels of bifidobacteria. Thus, the objective of any infant food manufacturer is to prepare a product that results in a formula-fed infant developing a breast-fed infant-like microbiota. The goal of this focused review is to discuss the structure, synthesis, and function of carbohydrate additives that play a role in governing the composition of the infant microbiome and have other health benefits.