Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 520(7549): 646-9, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25925477

RESUMO

The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

2.
Appl Opt ; 42(4): 724-35, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12564493

RESUMO

We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure errors, and we calculate the relaxation time of surface ripples.

3.
Appl Opt ; 42(13): 2415-21, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12737477

RESUMO

We have developed a new depth-graded multilayer system comprising W and SiC layers, suitable for use as hard x-ray reflective coatings operating in the energy range 100-200 keV. Grazing-incidence x-ray reflectance at E = 8 keV was used to characterize the interface widths, as well as the temporal and thermal stability in both periodic and depth-graded W/SiC structures, whereas synchrotron radiation was used to measure the hard x-ray reflectance of a depth-graded multilayer designed specifically for use in the range E approximately 150-170 keV. We have modeled the hard x-ray reflectance using newly derived optical constants, which we determined from reflectance versus incidence angle measurements also made using synchrotron radiation, in the range E = 120-180 keV. We describe our experimental investigation in detail compare the new W/SiC multilayers with both W/Si and W/B4C films that have been studied previously, and discuss the significance of these results with regard to the eventual development of a hard x-ray nuclear line telescope.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa