Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 99, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932333

RESUMO

BACKGROUND: Longitudinal single-cell sequencing experiments of patient-derived models are increasingly employed to investigate cancer evolution. In this context, robust computational methods are needed to properly exploit the mutational profiles of single cells generated via variant calling, in order to reconstruct the evolutionary history of a tumor and characterize the impact of therapeutic strategies, such as the administration of drugs. To this end, we have recently developed the LACE framework for the Longitudinal Analysis of Cancer Evolution. RESULTS: The LACE 2.0 release aimed at inferring longitudinal clonal trees enhances the original framework with new key functionalities: an improved data management for preprocessing of standard variant calling data, a reworked inference engine, and direct connection to public databases. CONCLUSIONS: All of this is accessible through a new and interactive Shiny R graphical interface offering the possibility to apply filters helpful in discriminating relevant or potential driver mutations, set up inferential parameters, and visualize the results. The software is available at: github.com/BIMIB-DISCo/LACE.


Assuntos
Neoplasias , Software , Humanos , Neoplasias/genética , Células Clonais
2.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33003202

RESUMO

MOTIVATION: The advancements of single-cell sequencing methods have paved the way for the characterization of cellular states at unprecedented resolution, revolutionizing the investigation on complex biological systems. Yet, single-cell sequencing experiments are hindered by several technical issues, which cause output data to be noisy, impacting the reliability of downstream analyses. Therefore, a growing number of data science methods has been proposed to recover lost or corrupted information from single-cell sequencing data. To date, however, no quantitative benchmarks have been proposed to evaluate such methods. RESULTS: We present a comprehensive analysis of the state-of-the-art computational approaches for denoising and imputation of single-cell transcriptomic data, comparing their performance in different experimental scenarios. In detail, we compared 19 denoising and imputation methods, on both simulated and real-world datasets, with respect to several performance metrics related to imputation of dropout events, recovery of true expression profiles, characterization of cell similarity, identification of differentially expressed genes and computation time. The effectiveness and scalability of all methods were assessed with regard to distinct sequencing protocols, sample size and different levels of biological variability and technical noise. As a result, we identify a subset of versatile approaches exhibiting solid performances on most tests and show that certain algorithmic families prove effective on specific tasks but inefficient on others. Finally, most methods appear to benefit from the introduction of appropriate assumptions on noise distribution of biological processes.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Software , Animais , Humanos
3.
Curr Genomics ; 22(2): 88-97, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34220296

RESUMO

BACKGROUND: The increasing availability of omics data collected from patients affected by severe pathologies, such as cancer, is fostering the development of data science methods for their analysis. INTRODUCTION: The combination of data integration and machine learning approaches can provide new powerful instruments to tackle the complexity of cancer development and deliver effective diagnostic and prognostic strategies. METHODS: We explore the possibility of exploiting the topological properties of sample-specific metabolic networks as features in a supervised classification task. Such networks are obtained by projecting transcriptomic data from RNA-seq experiments on genome-wide metabolic models to define weighted networks modeling the overall metabolic activity of a given sample. RESULTS: We show the classification results on a labeled breast cancer dataset from the TCGA database, including 210 samples (cancer vs. normal). In particular, we investigate how the performance is affected by a threshold-based pruning of the networks by comparing Artificial Neural Networks, Support Vector Machines and Random Forests. Interestingly, the best classification performance is achieved within a small threshold range for all methods, suggesting that it might represent an effective choice to recover useful information while filtering out noise from data. Overall, the best accuracy is achieved with SVMs, which exhibit performances similar to those obtained when gene expression profiles are used as features. CONCLUSION: These findings demonstrate that the topological properties of sample-specific metabolic networks are effective in classifying cancer and normal samples, suggesting that useful information can be extracted from a relatively limited number of features.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa