Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Arch Pharm (Weinheim) ; 357(8): e2400063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38704748

RESUMO

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.


Assuntos
Amilorida , Aquaporina 2 , Diabetes Insípido Nefrogênico , Modelos Animais de Doenças , Túbulos Renais Coletores , Animais , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/prevenção & controle , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/patologia , Túbulos Renais Coletores/metabolismo , Masculino , Ratos , Aquaporina 2/metabolismo , Amilorida/farmacologia , Ratos Wistar , Fatores de Tempo , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/induzido quimicamente , Lítio/farmacologia , Relação Dose-Resposta a Droga
2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892145

RESUMO

These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.


Assuntos
Fator 15 de Diferenciação de Crescimento , Rim , Humanos , Fator 15 de Diferenciação de Crescimento/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Animais , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612818

RESUMO

Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.


Assuntos
Medula Suprarrenal , Extremidades , Animais , Camundongos , Claudinas/genética , Camundongos Knockout , Expressão Gênica
4.
J Intern Med ; 293(1): 4-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35909256

RESUMO

The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).


Assuntos
Acidose Tubular Renal , Túbulos Renais Coletores , Humanos , Túbulos Renais Coletores/metabolismo , Aquaporina 2/metabolismo , Néfrons/metabolismo , Rim , Acidose Tubular Renal/metabolismo , Água/metabolismo
5.
J Am Soc Nephrol ; 31(5): 1009-1023, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32245797

RESUMO

BACKGROUND: Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. METHODS: To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule-specific knockout mice lacking ENaC subunits to assess the ENaC's effect on claudin-8 expression. RESULTS: Overexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule-specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC ß-subunit or α-subunit silencing or kidney tubule-specific ß-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. CONCLUSIONS: Our data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.


Assuntos
Claudinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Coletores/metabolismo , Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Transporte Biológico , Células Cultivadas , Cloretos/metabolismo , Claudinas/deficiência , Claudinas/genética , Canais Epiteliais de Sódio/deficiência , Canais Epiteliais de Sódio/genética , Inativação Gênica , Transporte de Íons , Camundongos , Camundongos Knockout , RNA Mensageiro/biossíntese , Proteínas Recombinantes/metabolismo , Transdução Genética
6.
Am J Physiol Renal Physiol ; 318(2): F422-F442, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841389

RESUMO

The thick ascending limb of the loop of Henle (TAL) is the first segment of the distal nephron, extending through the whole outer medulla and cortex, two regions with different composition of the peritubular environment. The TAL plays a critical role in the control of NaCl, water, acid, and divalent cation homeostasis, as illustrated by the consequences of the various monogenic diseases that affect the TAL. It delivers tubular fluid to the distal convoluted tubule and thereby affects the function of the downstream tubular segments. The TAL is commonly considered as a whole. However, many structural and functional differences exist between its medullary and cortical parts. The present review summarizes the available data regarding the similarities and differences between the medullary and cortical parts of the TAL. Both subsegments reabsorb NaCl and have high Na+-K+-ATPase activity and negligible water permeability; however, they express distinct isoforms of the Na+-K+-2Cl- cotransporter at the apical membrane. Ammonia and bicarbonate are mostly reabsorbed in the medullary TAL, whereas Ca2+ and Mg2+ are mostly reabsorbed in the cortical TAL. The peptidic hormone receptors controlling transport in the TAL are not homogeneously expressed along the cortical and medullary TAL. Besides this axial heterogeneity, structural and functional differences are also apparent between species, which underscores the link between properties and role of the TAL under various environments.


Assuntos
Córtex Renal/metabolismo , Medula Renal/metabolismo , Alça do Néfron/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Reabsorção Renal , Equilíbrio Hidroeletrolítico , Adaptação Fisiológica , Animais , Evolução Molecular , Humanos , Córtex Renal/anatomia & histologia , Medula Renal/anatomia & histologia , Alça do Néfron/anatomia & histologia , Proteínas de Membrana Transportadoras/genética , Especificidade da Espécie
7.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R320-R328, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913688

RESUMO

The modifications of the hemodynamic system and hydromineral metabolism are physiological features characterizing a normal gestation. Thus, the ability to expand plasma volume without increasing the level of blood pressure is necessary for the correct perfusion of the placenta. The kidney is essential in this adaptation by reabsorbing avidly sodium and fluid. In this study, we observed that the H,K-ATPase type 2 (HKA2), an ion pump expressed in kidney and colon and already involved in the control of the K+ balance during gestation, is also required for the correct plasma volume expansion and to maintain normal blood pressure. Indeed, compared with WT pregnant mice that exhibit a 1.6-fold increase of their plasma volume, pregnant HKA2-null mice (HKA2KO) only modestly expand their extracellular volume (×1.2). The renal expression of the epithelial Na channel (ENaC) α- and γ-subunits and that of the pendrin are stimulated in gravid WT mice, whereas the Na/Cl- cotransporter (NCC) expression is downregulated. These modifications are all blunted in HKA2KO mice. This impeded renal adaptation to gestation is accompanied by the development of hypotension in the pregnant HKA2KO mice. Altogether, our results showed that the absence of the HKA2 during gestation leads to an "underfilled" situation and has established this transporter as a key player of the renal control of salt and potassium metabolism during gestation.


Assuntos
Pressão Sanguínea , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Rim/enzimologia , Volume Plasmático , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporina 2/metabolismo , Colo/enzimologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
8.
Nephrol Dial Transplant ; 35(11): 1901-1908, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369102

RESUMO

BACKGROUND: In rodents, the stimulation of adrenal progesterone is necessary for renal adaptation under potassium depletion. Here, we sought to determine the role of progesterone in adrenal adaptation in potassium-depleted healthy human volunteers and compared our findings with data collected in patients with Gitelman syndrome (GS), a salt-losing tubulopathy. METHODS: Twelve healthy young men were given a potassium-depleted diet for 7 days at a tertiary referral medical centre (NCT02297048). We measured by liquid chromatography coupled to tandem mass spectroscopy plasma steroid concentrations at Days 0 and 7 before and 30 min after treatment with tetracosactide. We compared these data with data collected in 10 GS patients submitted to tetracosactide test. RESULTS: The potassium-depleted diet decreased plasma potassium in healthy subjects by 0.3 ± 0.1 mmol/L, decreased plasma aldosterone concentration by 50% (P = 0.0332) and increased plasma 17-hydroxypregnenolone concentration by 45% (P = 0.0232) without affecting other steroids. CYP17 activity, as assessed by 17-hydroxypregnenolone/pregnenolone ratio, increased by 60% (P = 0.0389). As compared with healthy subjects, GS patients had 3-fold higher plasma concentrations of aldosterone, 11-deoxycortisol (+30%) and delta 4-androstenedione (+14%). Their post-tetracosactide progesterone concentration was 2-fold higher than that of healthy subjects and better correlated to plasma potassium than to plasma renin. CONCLUSION: The increase in 17-hydroxypregnenolone concentration after mild potassium depletion in otherwise healthy human subjects suggests that 17 hydroxylation of pregnenolone prevents the increase in progesterone observed in potassium-depleted mice. The unexpected over-response of non-mineralocorticoid steroids to tetracosactide in GS subjects suggests that the adrenal system not only adapts to sodium depletion but may also respond to hypokalaemia.


Assuntos
Glândulas Suprarrenais/fisiologia , Síndrome de Gitelman/fisiopatologia , Potássio/metabolismo , Progesterona/sangue , Adolescente , Adulto , Idoso , Aldosterona/sangue , Animais , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Feminino , Síndrome de Gitelman/sangue , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Renina/sangue , Esteroides/sangue , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
9.
Am J Physiol Renal Physiol ; 317(2): F435-F443, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188029

RESUMO

We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.


Assuntos
Equilíbrio Ácido-Base , Acidose/enzimologia , Fator Natriurético Atrial/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/enzimologia , Sódio/urina , Acidose/genética , Acidose/fisiopatologia , Acidose/urina , Adaptação Fisiológica , Aldosterona/urina , Animais , GMP Cíclico/urina , Feminino , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Ratos , Transdução de Sinais , Xenopus laevis
10.
Am J Physiol Renal Physiol ; 313(6): F1254-F1263, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877883

RESUMO

The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl-/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl- transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.


Assuntos
Transporte Biológico/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Néfrons/metabolismo , Cloreto de Sódio/metabolismo , Animais , Humanos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa