Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mult Scler ; 23(3): 362-369, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27672137

RESUMO

Treatments with a range of efficacy and risk of adverse events have become available for the management of multiple sclerosis (MS). However, now the heterogeneity of clinical expression and responses to treatment pose major challenges to improving patient care. Selecting and managing the drug best balancing benefit and risk demands a new focus on the individual patient. Personalised medicine for MS is based on improving the precision of diagnosis for each patient in order to capture prognosis and provide an evidence-based framework for predicting treatment response and personalising patient monitoring. It involves development of predictive models involving the integration of clinical and biological data with an understanding of the impact of disease on the lives of individual patients. Here, we provide a brief, selective review of challenges to personalisation of the management of MS and suggest an agenda for stakeholder engagement and research to address them.


Assuntos
Esclerose Múltipla/terapia , Avaliação de Resultados em Cuidados de Saúde , Resultado do Tratamento , Humanos , Medicina de Precisão , Terapêutica
2.
Brain ; 136(Pt 1): 106-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365093

RESUMO

Neurodegeneration is the main cause for permanent disability in multiple sclerosis. The effect of current immunomodulatory treatments on neurodegeneration is insufficient. Therefore, direct neuroprotection and myeloprotection remain an important therapeutic goal. Targeting acid-sensing ion channel 1 (encoded by the ASIC1 gene), which contributes to the excessive intracellular accumulation of injurious Na(+) and Ca(2+) and is over-expressed in acute multiple sclerosis lesions, appears to be a viable strategy to limit cellular injury that is the substrate of neurodegeneration. While blockade of ASIC1 through amiloride, a potassium sparing diuretic that is currently licensed for hypertension and congestive cardiac failure, showed neuroprotective and myeloprotective effects in experimental models of multiple sclerosis, this strategy remains untested in patients with multiple sclerosis. In this translational study, we tested the neuroprotective effects of amiloride in patients with primary progressive multiple sclerosis. First, we assessed ASIC1 expression in chronic brain lesions from post-mortem of patients with progressive multiple sclerosis to identify the target process for neuroprotection. Second, we tested the neuroprotective effect of amiloride in a cohort of 14 patients with primary progressive multiple sclerosis using magnetic resonance imaging markers of neurodegeneration as outcome measures of neuroprotection. Patients with primary progressive multiple sclerosis underwent serial magnetic resonance imaging scans before (pretreatment phase) and during (treatment phase) amiloride treatment for a period of 3 years. Whole-brain volume and tissue integrity were measured with high-resolution T(1)-weighted and diffusion tensor imaging. In chronic brain lesions of patients with progressive multiple sclerosis, we demonstrate an increased expression of ASIC1 in axons and an association with injury markers within chronic inactive lesions. In patients with primary progressive multiple sclerosis, we observed a significant reduction in normalized annual rate of whole-brain volume during the treatment phase, compared with the pretreatment phase (P = 0.018, corrected). Consistent with this reduction, we showed that changes in diffusion indices of tissue damage within major clinically relevant white matter (corpus callosum and corticospinal tract) and deep grey matter (thalamus) structures were significantly reduced during the treatment phase (P = 0.02, corrected). Our results extend evidence of the contribution of ASIC1 to neurodegeneration in multiple sclerosis and suggest that amiloride may exert neuroprotective effects in patients with progressive multiple sclerosis. This pilot study is the first translational study on neuroprotection targeting ASIC1 and supports future randomized controlled trials measuring neuroprotection with amiloride in patients with multiple sclerosis.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/genética , Amilorida/uso terapêutico , Encéfalo/efeitos dos fármacos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Crônica Progressiva/patologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Projetos Piloto , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa