Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(25): 10619-24, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17537919

RESUMO

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2-/- mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2-/- mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.


Assuntos
Quinase 2 de Adesão Focal/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/fisiologia , Osteoporose/terapia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Células Cultivadas , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Ovariectomia , Ratos , Ratos Sprague-Dawley
2.
Bioorg Med Chem Lett ; 16(7): 1799-802, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16442794

RESUMO

Heptanoic acid lactams, exemplified by 2, were identified as highly selective EP4 agonists via high throughput screening. Lead optimization led to the identification of lactams with a 30-fold increase in EP4 potency in vitro. Compounds demonstrated robust bone anabolic effects when administered in vivo in rat models of osteoporosis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Desenvolvimento Ósseo , Osso e Ossos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Receptores de Prostaglandina E/agonistas , Animais , Feminino , Osteoporose , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP4
3.
J Biol Chem ; 278(3): 1998-2007, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12421822

RESUMO

We have previously described osteoblast/osteocyte factor 45 (OF45), a novel bone-specific extracellular matrix protein, and demonstrated that its expression is tightly linked to mineralization and bone formation. In this report, we have cloned and characterized the mouse OF45 cDNA and genomic region. Mouse OF45 (also called MEPE) was similar to its rat orthologue in that its expression was increased during mineralization in osteoblast cultures and the protein was highly expressed within the osteocytes that are imbedded within bone. To further determine the role of OF45 in bone metabolism, we generated a targeted mouse line deficient in this protein. Ablation of OF45 resulted in increased bone mass. In fact, disruption of only a single allele of OF45 caused significantly increased bone mass. In addition, knockout mice were resistant to aging-associated trabecular bone loss. Cancellous bone histomorphometry revealed that the increased bone mass was the result of increased osteoblast number and osteoblast activity with unaltered osteoclast number and osteoclast surface in knockout animals. Consistent with the bone histomorphometric results, we also determined that OF45 knockout osteoblasts produced significantly more mineralized nodules in ex vivo cell cultures than did wild type osteoblasts. Osteoclastogenesis and bone resorption in ex vivo cultures was unaffected by OF45 mutation. We conclude that OF45 plays an inhibitory role in bone formation in mouse.


Assuntos
Desenvolvimento Ósseo/genética , Proteínas da Matriz Extracelular/genética , Glicoproteínas , Tamanho do Órgão/genética , Fosfoproteínas , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Primers do DNA , DNA Complementar , Expressão Gênica , Dados de Sequência Molecular , Fenótipo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa