Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Bioorg Chem ; 126: 105873, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35598570

RESUMO

Effective targeting of αvß3 integrin is of high relevance in cancer research as this protein is overexpressed on several types of tumor cells, making such receptor ideal for the development of therapeutics and of diagnostic imaging agents. In this paper, the synthesis of a novel functionalized triazole-based RGD peptidomimetic and its covalent conjugation on pegylated gold nanostars is reported. These highly stable nanoconstructs showed a multivalent effect in binding αvß3 integrin receptors and proved to inhibit M21 cell adhesion at 25 pM concentration. Thanks to their peculiar surface plasmon resonance in the "NIR transparent window", targeted gold nanostars may represent a promising agent for anticancer multi-modality treatments. 2009 Elsevier Ltd. All rights reserved.


Assuntos
Peptidomiméticos , Adesão Celular , Linhagem Celular Tumoral , Ouro , Integrina alfaVbeta3/metabolismo , Integrina beta3 , Oligopeptídeos/farmacologia , Peptidomiméticos/farmacologia
2.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628383

RESUMO

Surface-enhanced Raman spectroscopy (SERS) exploiting Raman reporter-labeled nanoparticles (RR@NPs) represents a powerful tool for the improvement of optical bio-assays due to RRs' narrow peaks, SERS high sensitivity, and potential for multiplexing. In the present work, starting from low-cost and highly available raw materials such as cysteamine and substituted benzoic acids, novel bioorthogonal RRs, characterized by strong signal (103 counts with FWHM < 15 cm−1) in the biological Raman-silent region (>2000 cm−1), RRs are synthesized by implementing a versatile, modular, and straightforward method with high yields and requiring three steps lasting 18 h, thus overcoming the limitations of current reported procedures. The resulting RRs' chemical structure has SH-pendant groups exploited for covalent conjugation to high anisotropic gold-NPs. RR@NPs constructs work as SERS nanoprobes demonstrating high colloidal stability while retaining NPs' physical and vibrational properties, with a limit of detection down to 60 pM. RR@NPs constructs expose carboxylic moieties for further self-assembling of biomolecules (such as antibodies), conferring tagging capabilities to the SERS nanoprobes even in heterogeneous samples, as demonstrated with in vitro experiments by transmembrane proteins tagging in cell cultures. Finally, thanks to their non-overlapping spectra, we envision and preliminary prove the possibility of exploiting RR@NPs constructs simultaneously, aiming at improving current SERS-based multiplexing bioassays.


Assuntos
Nanopartículas , Análise Espectral Raman , Anticorpos/química , Ouro/química , Nanopartículas/química , Análise Espectral Raman/métodos
3.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200569

RESUMO

Single Photon Avalanche Diode (SPAD) arrays are increasingly exploited and have demonstrated potential in biochemical and biomedical research, both for imaging and single-point spectroscopy applications. In this study, we explore the application of SPADs together with fiber-optic-based delivery and collection geometry to realize fast and simultaneous single-point time-, spectral-, and depth-resolved fluorescence measurements at 375 nm excitation light. Spectral information is encoded across the columns of the array through grating-based dispersion, while depth information is encoded across the rows thanks to a linear arrangement of probe collecting fibers. The initial characterization and validation were realized against layered fluorescent agarose-based phantoms. To verify the practicality and feasibility of this approach in biological specimens, we measured the fluorescence signature of formalin-fixed rabbit aorta samples derived from an animal model of atherosclerosis. The initial results demonstrate that this detection configuration can report fluorescence spectral and lifetime contrast originating at different depths within the specimens. We believe that our optical scheme, based on SPAD array detectors and fiber-optic probes, constitute a powerful and versatile approach for the deployment of multidimensional fluorescence spectroscopy in clinical applications where information from deeper tissue layers is important for diagnosis.

4.
Small ; 14(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141120

RESUMO

The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab-on-a-chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin-conjugated photopolymer is successfully synthesized and optimally formulated to achieve high-performance SL-printing resolution, as demonstrated by the SL-fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single-run SL-based 3D-printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real-time optical microscopy analyses. Standard biotin-binding assays confirm the existence of biotin-heads on the surfaces of the embedded 3D microstructures and allow to demonstrate that the biofunctionality of biotin is not altered during the SL-printing, thus making it exploitable for further conjugation with other biomolecules. As a step forward, an in-line optical detection system is designed, prototyped via SL-printing and serially connected to the perfusion microchambers through customized world-to-chip connectors. Such detection system is successfully employed to optically analyze the solution flowing out of the microchambers, thus enabling indirect quantification of the concentration of target interacting biomolecules. The successful application of this novel biofunctional photopolymer as SL-material enables to greatly extend the versatility of SL to directly fabricate ULOCs with intrinsic biofunctionality.


Assuntos
Dispositivos Lab-On-A-Chip , Impressão Tridimensional , Estereolitografia , Fotoquímica , Polímeros/química
5.
J Funct Biomater ; 15(10)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39452595

RESUMO

We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows for the growth of diverse cells, its 3D printability has been found to be limited by its low viscosity. To overcome that drawback, making the hydrogel both compatible with hiPSCs and 3D-printable, we developed an extrudable GelMA-based bioink by adding xanthan gum (XG). The GelMA-XG composite hydrogel had an elastic modulus (~9 kPa) comparable to that of cardiac tissue, and enabled 3D printing with high values of printing accuracy (83%) and printability (0.98). Tests with hiPSCs showed the hydrogel's ability to promote their proliferation within both 2D and 3D cell cultures. The tests also showed that hiPSCs inside hemispheres of the hydrogel were able to differentiate into cardiomyocytes, capable of spontaneous contractions (average frequency of ~0.5 Hz and amplitude of ~2%). Furthermore, bioprinting tests proved the possibility of fabricating 3D constructs of the hiPSC-laden hydrogel, with well-defined line widths (~800 µm).

6.
Nat Commun ; 15(1): 7975, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266504

RESUMO

Although Surface Enhanced Raman Scattering (SERS) is widely applied for ultrasensitive diagnostics and imaging, its potential is largely limited by the difficult preparation of SERS tags, typically metallic nanoparticles (NPs) functionalized with Raman-active molecules (RRs), whose production often involves complex synthetic approaches, low colloidal stability and poor reproducibility. Here, we introduce LipoGold Tags, a simple platform where gold NPs (AuNPs) clusters form via self-assembly on lipid vesicle. RRs embedded in the lipid bilayer experience enhanced electromagnetic field, significantly increasing their Raman signals. We modulate RRs and lipid vesicle concentrations to achieve optimal SERS enhancement and we provide robust structural characterization. We further demonstrate the versatility of LipoGold Tags by functionalizing them with biomolecular probes, including antibodies. As proof of concept, we successfully detect intracellular GM1 alterations, distinguishing healthy donors from patients with infantile GM1 gangliosidosis, showcasing LipoGold Tags as advancement in SERS probes production.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Gangliosídeo G(M1)/química
7.
ACS Appl Bio Mater ; 7(7): 4497-4509, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925631

RESUMO

Although visible light-based stereolithography (SLA) represents an affordable technology for the rapid prototyping of 3D scaffolds for in vitro support of cells, its potential could be limited by the lack of functional photocurable biomaterials that can be SLA-structured at micrometric resolution. Even if innovative photocomposites showing biomimetic, bioactive, or biosensing properties have been engineered by loading inorganic particles into photopolymer matrices, main examples rely on UV-assisted extrusion-based low-resolution processes. Here, SLA-printable composites were obtained by mixing a polyethylene glycol diacrylate (PEGDA) hydrogel with multibranched gold nanoparticles (NPs). NPs were engineered to copolymerize with the PEGDA matrix by implementing a functionalization protocol involving covalent grafting of allylamine molecules that have C═C pendant moieties. The formulations of gold nanocomposites were tailored to achieve high-resolution fast prototyping of composite scaffolds via visible light-based SLA. Furthermore, it was demonstrated that, after mixing with a polymer and after laser structuring, gold NPs still retained their unique plasmonic properties and could be exploited for optical detection of analytes through surface-enhanced Raman spectroscopy (SERS). As a proof of concept, SERS-sensing performances of 3D printed plasmonic scaffolds were successfully demonstrated with a Raman probe molecule (e.g., 4-mercaptobenzoic acid) from the perspective of future extensions to real-time sensing of cell-specific markers released within cultures. Finally, biocompatibility tests preliminarily demonstrated that embedded NPs also played a key role by inducing physiological cell-cytoskeleton rearrangements, further confirming the potentialities of such hybrid nanocomposites as groundbreaking materials in laser-based bioprinting.


Assuntos
Materiais Biocompatíveis , Ouro , Hidrogéis , Lasers , Teste de Materiais , Nanocompostos , Impressão Tridimensional , Análise Espectral Raman , Alicerces Teciduais , Ouro/química , Nanocompostos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Alicerces Teciduais/química , Tamanho da Partícula , Polietilenoglicóis/química , Nanopartículas Metálicas/química , Propriedades de Superfície , Humanos
8.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370607

RESUMO

Downsizing surface-enhanced Raman spectroscopy (SERS) within microfluidic devices has opened interesting perspectives for the development of low-cost and portable (bio)sensors for the optical analysis of liquid samples. Despite the research efforts, SERS-fluidic devices still rely either on the use of expensive bulky set-ups or on polymeric devices giving spurious background signals fabricated via expensive manufacturing processes. Here, polymeric platforms integrating fluidics and optics were fabricated with versatile designs allowing easy coupling with fiber-based Raman systems. For the first time, anti-fouling photocurable perfluoropolyether (PFPE) was explored for high-throughput SERS-integrating chip fabrication via replica molding of negative stamps obtained through standard and advanced fabrication processes. The PFPE devices comprised networks of channels for fluid handling and for optical fiber housing with multiple orientations. Embedded microfeatures were used to control the relative positioning of the fibers, thus guaranteeing the highest signal delivering and collection. The feasibility of PFPE devices as fiber-based SERS fluidic platforms was demonstrated through the straightforward acquisition of Raman-SERS spectra of a mixture of gold nanoparticles as SERS substrates with rhodamine 6G (Rh6G) at decreasing concentrations. In the presence of high-performing gold nanostars, the Rh6G signal was detectable at dilutions down to the nanomolar level even without tight focusing and working at low laser power-a key aspect for analyte detection in real-world biomedical and environmental applications.

9.
ACS Sens ; 8(10): 3693-3700, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758234

RESUMO

Alzheimer's disease (AD) is a debilitating neurological condition characterized by cognitive decline, memory loss, and behavioral skill impairment, features that worsen with time. Early diagnosis will likely be the most effective therapy for Alzheimer's disease since it can ensure timely pharmacological treatments that can reduce the irreversible progression and delay the symptoms. Amyloid ß-peptide 1-42 (Aß (1-42)) is considered one of the key pathological AD biomarkers that is present in different biological fluids. However, Aß (1-42) detection still relies on colorimetric and enzyme-linked immunoassays as the gold standard characterized by low accuracy or high costs, respectively. In this context, optical detection techniques based on surface-enhanced Raman spectroscopy (SERS) through advanced nanoconstructs are promising alternatives for the development of novel rapid and low-cost methods for the targeting of Aß pathological biomarkers in fluids. Here, a multilayered nanoprobe constituted by bioorthogonal Raman reporters (RRs) embedded within two layers of gold nanoparticles (Au@RRs@AuNPs) has been developed and successfully validated for specific detection of Aß (1-42) in the human cerebrospinal fluid (CSF) with sensitivity down to pg/mL. The smart double-layer configuration enables us to exploit the outer gold NP surfaces for selective absorption of targeted peptide whose concentration controls the aggregation behavior of Au@RRs@AuNPs, proportionally reflected in Raman intensity changes, providing high specificity and sensitivity and representing a significant step ahead of the state of the art on SERS for clinical analyses.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Ouro , Nanopartículas Metálicas/química , Biomarcadores
10.
Biomedicines ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625689

RESUMO

Epilepsy accounts for a significant proportion of the world's disease burden. Indeed, many research efforts are produced both to investigate the basic mechanism ruling its genesis and to find more effective therapies. In this framework, the use of zebrafish larvae, owing to their peculiar features, offers a great opportunity. Here, we employ transgenic zebrafish larvae expressing GCaMP6s in all neurons to characterize functional alterations occurring during seizures induced by pentylenetetrazole. Using a custom two-photon light-sheet microscope, we perform fast volumetric functional imaging of the entire larval brain, investigating how different brain regions contribute to seizure onset and propagation. Moreover, employing a custom behavioral tracking system, we outline the progressive alteration of larval swim kinematics, resulting from different grades of seizures. Collectively, our results show that the epileptic larval brain undergoes transitions between diverse neuronal activity regimes. Moreover, we observe that different brain regions are progressively recruited into the generation of seizures of diverse severity. We demonstrate that midbrain regions exhibit highest susceptibility to the convulsant effects and that, during periods preceding abrupt hypersynchronous paroxysmal activity, they show a consistent increase in functional connectivity. These aspects, coupled with the hub-like role that these regions exert, represent important cues in their identification as epileptogenic hubs.

11.
Prog Biophys Mol Biol ; 166: 173-181, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303730

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, expressed in a variety of cell types and in all tissues, control excitation and rhythm. Since their discovery in neurons and cardiac pacemaker cells, they attracted the attention of medicinal chemistry and pharmacology as novel targets to shape (patho)physiological mechanisms. To date, ivabradine represents the first-in-class drug as specific bradycardic agent in cardiac diseases; however, new applications are emerging in parallel with the demonstration of the involvement of different HCN isoforms in central and peripheral nervous system. Hence, the possibility to target specific isoforms represents an attractive development in this field; indeed, HCN1, HCN2 or HCN4 specific blockers have shown promising features in vitro and in vivo, with remarkable pharmacological differences likely depending on the diverse functional role and tissue distribution. Here, we show a recently developed compound with high potency as HCN2-HCN4 blocker; because of its unique profile, this compound may deserve further investigation.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
12.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800443

RESUMO

Gold nanoparticles (AuNPs) show physicochemical and optical functionalities that are of great interest for spectroscopy-based detection techniques, and especially for surface enhanced Raman spectroscopy (SERS), which is capable of providing detailed information on the molecular content of analysed samples. Moreover, the introduction of different moieties combines the interesting plasmonic properties of the AuNPs with the specific and selective recognition capabilities of the antibodies (Ab) towards antigens. The conjugation of biomolecules to gold nanoparticles (AuNPs) has received considerable attention for analysis of liquid samples and in particular biological fluids (biofluids) in clinical diagnostic and therapeutic field. To date, gold nanostars (AuNSts) are gaining more and more attention as optimal enhancers for SERS signals due to the presence of sharp branches protruding from the core, providing a huge number of "hot spots". To this end, we focused our attention on the design, optimization, and deep characterization of a bottom up-process for (i) AuNPs increasing stabilization in high ionic strength buffer, (ii) covalent conjugation with antibodies, while (iii) retaining the biofunctionality to specific tag analyte within the biofluids. In this work, a SERS-based substrate was developed for the recognition of a short fragment (HA) of the hemagglutinin protein, which is the major viral antigen inducing a neutralizing antibody response. The activity and specific targeting with high selectivity of the Ab-AuNPs was successfully tested in transfected neuroblastoma cells cultures. Then, SERS capabilities were assessed measuring Raman spectra of HA solution, thus opening interesting perspective for the development of novel versatile highly sensitive biofluids sensors.

13.
Front Physiol ; 12: 692496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539428

RESUMO

Current techniques for fast characterization of cardiac electrophysiology employ optical technologies to control and monitor action potential features of single cells or cellular monolayers placed in multiwell plates. High-speed investigation capacities are commonly achieved by serially analyzing well after well employing fully automated fluorescence microscopes. Here, we describe an alternative cost-effective optical approach (MULTIPLE) that exploits high-power LED arrays to globally illuminate a culture plate and an sCMOS sensor for parallel detection of the fluorescence coming from multiple wells. MULTIPLE combines optical detection of action potentials using a red-shifted voltage-sensitive fluorescent dye (di-4-ANBDQPQ) with optical stimulation, employing optogenetic actuators, to ensure excitation of cardiomyocytes at constant rates. MULTIPLE was first characterized in terms of interwell uniformity of the illumination intensity and optical detection performance. Then, it was applied for probing action potential features in HL-1 cells (i.e., mouse atrial myocyte-like cells) stably expressing the blue light-activatable cation channel CheRiff. Under proper stimulation conditions, we were able to accurately measure action potential dynamics across a 24-well plate with variability across the whole plate of the order of 10%. The capability of MULTIPLE to detect action potential changes across a 24-well plate was demonstrated employing the selective K v 11.1 channel blocker (E-4031), in a dose titration experiment. Finally, action potential recordings were performed in spontaneous beating human induced pluripotent stem cell derived cardiomyocytes following pharmacological manipulation of their beating frequency. We believe that the simplicity of the presented optical scheme represents a valid complement to sophisticated and expensive state-of-the-art optical systems for high-throughput cardiac electrophysiological investigations.

14.
J Mater Chem B ; 8(8): 1629-1639, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011615

RESUMO

Optical detection techniques based on surface enhanced Raman spectroscopy (SERS) are a powerful tool for biosensing applications. Meanwhile, due to technological advances, different approaches have been investigated to integrate SERS substrates on the tip of optical fibres for molecular probing in liquids. To further demonstrate the perspectives offered by SERS-on-fiber technology for diagnostic purposes, in this study, novel cap-shaped SERS sensors for reversible coupling with customized multimodal probes were prototyped via low-cost polymer casting of polydimethylsiloxane (PDMS) and further assembly of gold nanoparticles (Au NPs) of varied sizes and shapes. To demonstrate the feasibility of liquid sensing with cap sensors using backside illumination and detection, the spectra of rhodamine were acquired by coupling the caps with the fiber. As expected by UV-vis, the highest SERS efficiency was observed for NP-decorated substrates with plasmonic properties in resonance with the irradiation wavelength. Then, SERS biosensors for the specific detection of amyloid-ß (Aß) neurotoxic biomarkers were realized by covalent grafting of Aß antibodies. As attested by fluorescence images and SERS measurements, the biosensors successfully exhibited enhanced Aß affinity compared to the bare sensors without ligands. Finally, these versatile (bio)sensors are a powerful tool to transform any milli-sized fibers into functional (bio)sensing platforms with plasmonic and biochemical properties tailored for specific applications.


Assuntos
Peptídeos beta-Amiloides/análise , Técnicas Biossensoriais/métodos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Dimetilpolisiloxanos/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química , Fibras Ópticas , Rodaminas/química , Análise Espectral Raman
15.
Front Neuroanat ; 13: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971902

RESUMO

The combination of biological tissue clearing methods with light-sheet fluorescence microscopy (LSFM) allows acquiring images of specific biological structures of interest at whole organ scale and microscopic resolution. Differently to classical epifluorescence techniques, where the sample is cut into slices, LSFM preserves the whole organ architecture, which is of particular relevance for investigations of long-range neuronal circuits. This imaging modality comes with the need of new protocols for sample mounting. Gel matrix, hooks, tips, glues, and quartz cuvettes have been used to keep whole rodent organs in place during image acquisitions. The last one has the advantage of avoiding sample damage and optical aberrations when using a quartz refractive index (RI) matching solution. However, commercially available quartz cuvettes for such large samples are expensive. We propose the use of polydimethylsiloxane (PDMS) for creating tailor-made cuvettes for sample holding. For validation, we compared PDMS and quartz cuvettes by measuring light transmittance and performing whole mouse-brain imaging with LSFM. Moreover, imaging can be performed using an inexpensive RI matching solution, which further reduces the cost of the imaging process. Worth of note, the RI matching solution used in combination with PDMS leads to a moderate expansion of the sample with respect to its original size, which may represent an advantage when investigating small components, such as neuronal processes. Overall, we found the use of custom-made PDMS cuvettes advantageous in term of cost, image quality, or preservation of sample integrity with respect to other whole-mouse brain mounting strategies adopted for LSFM.

16.
ACS Appl Mater Interfaces ; 8(39): 26332-26342, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27610704

RESUMO

In the present work, prototypes of polymeric cantilever-based magnetic microstructures were fabricated by means of stereolithography (SL). To this end, a UV-curable system suitable for high-resolution SL-processing was formulated by blending a bifunctional acrylic monomer with photoinitiator and visible dye whose content was tuned to tailor resin SL sensitivity. Subsequently, to confer ferromagnetic properties to the photopolymer, two different strategies were implemented. A two-step approach involved selective deposition of a metal layer on photopolymer SL-cured surfaces through an electroless plating process. On the other hand, SL-processable ferromagnetically responsive nanocomposites (FRCs) were obtained by directly loading magnetite nanoparticles within the photopolymer matrix. In order to achieve high-printing resolution, resin SL sensitivities were studied as a function of the various additives contents. Photocalorimetric analyses were also performed to investigate the photopolymer conversion efficiency upon light exposure. High-performing formulations were characterized by reduced penetration depth (<50 µm) and small critical energies thus enabling for fast printing of micrometric structures. Finally, the self-standing characteristics of the resin combined with the layered-fashion deposition typical of the 3D printing technologies were exploited for the fabrication of cantilever (CL)-based beams presented as possible magnetic sensors. As a demonstration of the feasibility of the two approaches, the magnetic beams were successfully actuated and their sensing performances in terms of static deflection vs applied magnetic field applied were qualitatively studied. Being not restricted to CL-based geometries, the combination of SL-printing with the formulation of novel smart photopolymers open the way toward the fabrication of high-customized complex 3D models integrating functional microstructures.

17.
Mater Sci Eng C Mater Biol Appl ; 62: 414-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952441

RESUMO

A simple photolithographic process for directly patterning glycidyl methacrylate modified hyaluronic acid features onto UV curable perfluoropolyether-based surfaces is presented. Due to the versatility of the developed method, HA spotted areas with different geometrical features could be rapidly and inexpensively designed. In addition, the excellent antifouling and fouling-release properties of the substrates enabled direct HA baits photo-grafting onto PFPEs without further surface passivation or chemical modification to avoid not specific adsorption. The aim of the study was to locally switch the surface properties of the PFPEs from cells and protein repulsive to adherent. Particularly, we exploited HA well-known preferential interactions with CD44 transmembrane receptors to selectively immobilize cancer cells. Living cell arrays offer a higher-resolution visualization of HA-CD44 interactions and may provide a deep insight into understanding molecular mechanisms needed to develop selective therapies and diagnosis against tumor growth.


Assuntos
Éteres/química , Fluorocarbonos/química , Ácido Hialurônico/química , Osteossarcoma/metabolismo , Processos Fotoquímicos , Linhagem Celular Tumoral , Células Imobilizadas/metabolismo , Humanos
18.
Colloids Surf B Biointerfaces ; 146: 250-9, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27351136

RESUMO

A simple method for constructing versatile ordered biotin/avidin arrays on UV-curable perfluoropolyethers (PFPEs) is presented. The goal is the realization of a versatile platform where any biotinylated biological ligands can be further linked to the underlying biotin/avidin array. To this end, microcontact arrayer and microcontact printing technologies were developed for photobiotin direct printing on PFPEs. As attested by fluorescence images, we demonstrate that this photoactive form of biotin is capable of grafting onto PFPEs surfaces during irradiation. Bioaffinity conjugation of the biotin/avidin system was subsequently exploited for further self-assembly avidin family proteins onto photobiotin arrays. The excellent fouling release PFPEs surface properties enable performing avidin assembly step simply by arrays incubation without PFPEs surface passivation or chemical modification to avoid unspecific biomolecule adsorption. Finally, as a proof of principle biotinylated heparin was successfully grafted onto photobiotin/avidin arrays.


Assuntos
Avidina/química , Azidas/química , Incrustação Biológica , Biotina/análogos & derivados , Éteres/química , Fluorocarbonos/química , Heparina/química , Processos Fotoquímicos , Polímeros/química , Biotina/química , Biotinilação , Fluorescência , Propriedades de Superfície
19.
Biomed Mater ; 10(1): 015012, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25594262

RESUMO

Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Ácido Hialurônico/química , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Compostos de Epóxi/química , Citometria de Fluxo , Humanos , Hidrogéis/química , Imageamento Tridimensional , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Microfluídica , Osteócitos/citologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
20.
J Mech Behav Biomed Mater ; 29: 309-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140731

RESUMO

Chemically crosslinked hyaluronic acid hydrogels are synthesized with a homogeneous crosslinking process using divinyl sulfone (DVS) as crosslinking agent. Testing different conditions, in terms of both DVS content and curing time, we aim to keep control over the crosslinking process in order to prepare biocompatible hydrogels with mechanical properties closely approximating those of extracellular matrix (ECM) of natural stem cells niches (0.1÷50kPa). The hydrogels properties are evaluated through a reliable methodology based on three independent techniques: dynamic rheological analysis, used as benchmark method; swelling experiments following the Flory-Rehner theory and atomic force microscope (AFM) nanoindentation experiments. Our results demonstrate that controlling crosslinking parameters it is possible to design hydrogels with desired elastic moduli values. HA hydrogels can be ideal coating materials to be implemented in regenerative medicine and particularly in the engineering of ECM niches in vitro.


Assuntos
Materiais Biomiméticos/química , Ácido Hialurônico/química , Hidrogéis/química , Teste de Materiais , Fenômenos Mecânicos , Medicina Regenerativa/métodos , Microscopia de Força Atômica , Reologia , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa