RESUMO
Sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) have been implicated in the regulation of many cellular processes including growth regulation, protection from apoptosis, stimulation of angiogenesis, and most recently as mediators of the TNF-alpha inflammatory response. In this study we set out to examine the role of SK1/S1P in the RAW macrophage response to the potent inflammatory stimulus lipopolysaccharide (LPS). We show that LPS increases cellular levels of SK1 message and protein. This increase is at the transcriptional level and is accompanied by increased SK activity and generation of S1P. S1P is able to cause increases in COX-2 and PGE2 levels in RAW cells. Knockdown of SK1 using siRNA is able to inhibit the TNF but not the LPS inflammatory response. Moreover, knockdown of SK1 enhances both TNF- and LPS-induced apoptosis. These data indicate that there is a dual and distinct role for SK1 and S1P in the TNF and the LPS inflammatory pathways.
Assuntos
Inflamação/fisiopatologia , Lisofosfolipídeos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Lipopolissacarídeos , Macrófagos , Camundongos , Esfingosina/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para CimaRESUMO
Sphingosine kinase 1 (SK1) is a key enzyme critical to the sphingolipid metabolic pathway responsible for catalyzing the formation of the bioactive lipid sphingosine-1-phosphate. SK1-mediated production of sphingosine-1-phosphate has been shown to stimulate such biological processes as cell growth, differentiation, migration, angiogenesis, and inhibition of apoptosis. In this study, cell type-specific immunolocalization of SK1 was examined in the bronchus/terminal bronchiole of the lung. Strong immunopositive staining was evident at the apical surface of pseudostratified epithelial cells of the bronchus and underlying smooth muscle cells, submucosal serous glands, immature chondrocytes, type II alveolar cells, foamy macrophages, endothelial cells of blood vessels, and neural bundles. Immunohistochemical screening for SK1 expression was performed in 25 samples of normal/tumor patient matched non-small-cell lung cancer tissue and found that 25 of 25 tumor samples (carcinoid [5 samples], squamous [10 samples], and adenocarcinoma tumors [10 samples]), exhibited overwhelmingly positive immunostaining for SK1 as compared with patient-matched normal tissue. In addition, an approximately 2-fold elevation of SK1 mRNA expression was observed in lung cancer tissue versus normal tissue, as well as in several other solid tumors. Taken together, these findings define the localization of SK1 in lung and provide clues as to how SK1 may play a role in normal lung physiology and the pathophysiology of lung cancer.