RESUMO
Missense variants in ABCA4 constitute ~50% of causal variants in Stargardt disease (STGD1). Their pathogenicity is attributed to their direct effect on protein function, whilst their potential impact on pre-mRNA splicing disruption remains poorly understood. Interestingly, synonymous ABCA4 variants have previously been classified as 'severe' variants based on in silico analyses. Here, we systemically investigated the role of synonymous and missense variants in ABCA4 splicing by combining computational predictions and experimental assays. To identify variants of interest, we used SpliceAI to ascribe defective splice predictions on a dataset of 5579 biallelic STGD1 probands. We selected those variants with predicted delta scores for acceptor/donor gain > 0.20, and no previous reports on their effect on splicing. Fifteen ABCA4 variants were selected, 4 of which were predicted to create a new splice acceptor site and 11 to create a new splice donor site. In addition, three variants of interest with delta scores < 0.20 were included. The variants were introduced in wild-type midigenes that contained 4-12 kb of ABCA4 genomic sequence, which were subsequently expressed in HEK293T cells. By using RT-PCR and Sanger sequencing, we identified splice aberrations for 16 of 18 analyzed variants. SpliceAI correctly predicted the outcomes for 15 out of 18 variants, illustrating its reliability in predicting the impact of coding ABCA4 variants on splicing. Our findings highlight a causal role for coding ABCA4 variants in splicing aberrations, improving the severity assessment of missense and synonymous ABCA4 variants, and guiding to new treatment strategies for STGD1.
Assuntos
Degeneração Macular , Humanos , Doença de Stargardt/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Células HEK293 , Reprodutibilidade dos Testes , Mutação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Splice de RNARESUMO
Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Aconselhamento Genético , Transportadores de Cassetes de Ligação de ATP/genética , Estudos Transversais , Humanos , Mutação , Doença de Stargardt/genéticaRESUMO
Bardet-Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient with autosomal recessive apparently non-syndromic rod-cone dystrophy (RCD). Extra-ocular findings were limited to epilepsy and dental problems. Genetic analysis with a single molecule molecular inversion probes-based panel that targets the exons and splice sites of 113 genes associated with retinitis pigmentosa and Leber congenital amaurosis revealed a homozygous rare missense variant in the BBS9 gene (c.263C>T;p.(Ser88Leu)). This variant, which affects a highly conserved amino acid, is also located in the last base of Exon 3, and predicted to be splice-altering. An in vitro minigene splice assay demonstrated that this variant leads to the partial aberrant splicing of Exon 3. Therefore, we suggest that this variant is likely hypomorphic. This is in agreement with the relatively mild phenotype observed in the patient. Hence, the findings in our study expand the phenotypic spectrum associated with BBS9 variants and indicate that variants in this gene should be considered not only in BBS patients but also in individuals with non-syndromic IRD or IRD with very mild extra-ocular manifestations.
RESUMO
PURPOSE: Late-onset Stargardt disease is a subtype of Stargardt disease type 1 (STGD1), defined by an age of onset of 45 years or older. We describe the disease characteristics, underlying genetics, and disease progression of late-onset STGD1 and highlight the differences from geographic atrophy. DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-one patients with late-onset STGD1. METHODS: Medical files were reviewed for clinical data including age at onset, initial symptoms, and best-corrected visual acuity. A quantitative and qualitative assessment of retinal pigment epithelium (RPE) atrophy was performed on fundus autofluorescence images and OCT scans. MAIN OUTCOME MEASURES: Age at onset, genotype, visual acuity, atrophy growth rates, and loss of external limiting membrane, ellipsoid zone, and RPE. RESULTS: Median age at onset was 55.0 years (range, 45-82 years). A combination of a mild and severe variant in ATP-binding cassette subfamily A member 4 (ABCA4) was the most common genotype (n = 49 [69.0%]). The most frequent allele, c.5603AâT (p.Asn1868Ile), was present in 43 of 71 patients (60.6%). No combination of 2 severe variants was found. At first presentation, all patients have flecks. Foveal-sparing atrophy was present in 33.3% of eyes, whereas 21.1% had atrophy with foveal involvement. Extrafoveal atrophy was present in 38.9% of eyes, and no atrophy was evident in 6.7% of eyes. Time-to-event curves showed a median duration of 15.4 years (95% confidence interval, 11.1-19.6 years) from onset to foveal involvement. The median visual acuity decline was -0.03 Snellen decimal per year (interquartile range [IQR], -0.07 to 0.00 Snellen decimal; 0.03 logarithm of the minimum angle of resolution). Median atrophy growth was 0.590 mm2/year (IQR, 0.046-1.641 mm2/year) for definitely decreased autofluorescence and 0.650 mm2/year (IQR, 0.299-1.729 mm2/year) for total decreased autofluorescence. CONCLUSIONS: Late-onset STGD1 is a subtype of STGD1 with most commonly 1 severe and 1 mild ABCA4 variant. The general patient presents with typical fundus flecks and retinal atrophy in a foveal-sparing pattern with preserved central vision. Misdiagnosis as age-related macular degeneration should be avoided to prevent futile invasive treatments with potential complications. In addition, correct diagnosis lends patients with late-onset STGD1 the opportunity to participate in potentially beneficial therapeutic trials for STGD1. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Retiniana , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Stargardt , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Eletrorretinografia , Tomografia de Coerência Óptica , Atrofia , Progressão da Doença , AngiofluoresceinografiaRESUMO
Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.
Assuntos
Consanguinidade , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Humanos , Paquistão , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Mutação , Adulto , Adolescente , Análise Mutacional de DNA , Adulto Jovem , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/diagnóstico , Pré-Escolar , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Testes Genéticos/métodos , Sequenciamento Completo do GenomaRESUMO
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Variações do Número de Cópias de DNA , Doenças Retinianas , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doenças Retinianas/genética , Feminino , Masculino , Linhagem , Íntrons/genética , Éxons/genética , Duplicação GênicaRESUMO
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.
Assuntos
Cromossomos Humanos Par 17/química , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Sequência de Aminoácidos , Diferenciação Celular , Reprogramação Celular , Criança , Mapeamento Cromossômico , Estudos de Coortes , Elementos Facilitadores Genéticos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Genes Dominantes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Cultura Primária de Células , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.
Assuntos
Adenosina Trifosfatases , Retinaldeído , Humanos , Doença de Stargardt/genética , Células HEK293 , Éxons/genética , Proteínas Mutantes , Transportadores de Cassetes de Ligação de ATP/genéticaRESUMO
PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.
Assuntos
Genoma Humano , Doenças Retinianas , Humanos , Estudos Retrospectivos , Genoma Humano/genética , Mapeamento Cromossômico , Análise de Sequência , Doenças Retinianas/genética , Variação Estrutural do Genoma , Proteínas do Olho/genéticaRESUMO
Purpose: This study sought to describe the phenotype frequency and genetic basis of inherited retinal diseases (IRDs) among a nationwide cohort of Israeli Jewish patients of Ethiopian ancestry. Methods: Patients' data-including demographic, clinical, and genetic information-were obtained through members of the Israeli Inherited Retinal Disease Consortium (IIRDC). Genetic analysis was performed by either Sanger sequencing for founder mutations or next-generation sequencing (targeted next-generation sequencing or whole-exome sequencing). Results: Forty-two patients (58% female) from 36 families were included, and their ages ranged from one year to 82 years. Their most common phenotypes were Stargardt disease (36%) and nonsyndromic retinitis pigmentosa (33%), while their most common mode of inheritance was autosomal recessive inheritance. Genetic diagnoses were ascertained for 72% of genetically analyzed patients. The most frequent gene involved was ABCA4. Overall, 16 distinct IRD mutations were identified, nine of which are novel. One of them, ABCA4-c.6077delT, is likely a founder mutation among the studied population. Conclusions: This study is the first to describe IRDs' phenotypic and molecular characteristics in the Ethiopian Jewish community. Most of the identified variants are rare. Our findings can help caregivers with clinical and molecular diagnosis and, we hope, enable adequate therapy in the near future.
Assuntos
Doenças Retinianas , Retinose Pigmentar , Feminino , Humanos , Masculino , Judeus/genética , Israel/epidemiologia , Linhagem , Retina , Retinose Pigmentar/epidemiologia , Retinose Pigmentar/genética , Mutação/genética , Análise Mutacional de DNA , Transportadores de Cassetes de Ligação de ATP/genéticaRESUMO
PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.
Assuntos
Degeneração Macular , Humanos , Hibridização Genômica Comparativa , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Linhagem , Fenótipo , Transativadores/genética , Proteínas de Homeodomínio/genéticaRESUMO
BACKGROUND: Inherited retinal diseases (IRDs) can be caused by variants in >270 genes. The Bardet-Biedl syndrome 1 (BBS1) gene is one of these genes and may be associated with syndromic and non-syndromic autosomal recessive retinitis pigmentosa (RP). Here, we identified a branchpoint variant in BBS1 and assessed its pathogenicity by in vitro functional analysis. METHODS: Whole genome sequencing was performed for three unrelated monoallelic BBS1 cases with non-syndromic RP. A fourth case received MGCM 105 gene panel analysis. Functional analysis using a midigene splice assay was performed for the putative pathogenic branchpoint variant in BBS1. After confirmation of its pathogenicity, patients were clinically re-evaluated, including assessment of non-ocular features of Bardet-Biedl syndrome. RESULTS: Clinical assessments of probands showed that all individuals displayed non-syndromic RP with macular involvement. Through detailed variant analysis and prioritisation, two pathogenic variants in BBS1, the most common missense variant, c.1169T>G (p.(Met390Arg)), and a branchpoint variant, c.592-21A>T, were identified. Segregation analysis confirmed that in all families, probands were compound heterozygous for c.1169T>G and c.592-21A>T. Functional analysis of the branchpoint variant revealed a complex splicing defect including exon 8 and exon 7/8 skipping, and partial in-frame deletion of exon 8. CONCLUSION: A putative severe branchpoint variant in BBS1, together with a mild missense variant, underlies non-syndromic RP in four unrelated individuals. To our knowledge, this is the first report of a pathogenic branchpoint variant in IRDs that results in a complex splice defect. In addition, this research highlights the importance of the analysis of non-coding regions in order to provide a conclusive molecular diagnosis.
Assuntos
Síndrome de Bardet-Biedl , Retinose Pigmentar , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Análise Mutacional de DNA , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Linhagem , Retina/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologiaRESUMO
Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained. We hypothesized that the missing heritability of MDs may be revealed by smMIPs-based sequencing of all MD-associated genes and risk factors. Using 17,394 smMIPs, we sequenced the coding regions of 105 iMD and AMD-associated genes and noncoding or regulatory loci, known pseudo-exons, and the mitochondrial genome in two test cohorts that were previously screened for variants in ABCA4. Following detailed sequencing analysis of 110 probands, a diagnostic yield of 38% was observed. This established an ''MD-smMIPs panel," enabling a genotype-first approach in a high-throughput and cost-effective manner, whilst achieving uniform and high coverage across targets. Further analysis will identify known and novel variants in MD-associated genes to offer an accurate clinical diagnosis to patients. Furthermore, this will reveal new genetic associations for MD and potential genetic overlaps between iMD and AMD.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Degeneração Macular , Humanos , Análise Custo-Benefício , Doença de Stargardt/genética , Éxons , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/genéticaRESUMO
Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Transportadores de Sulfato/genética , Aqueduto Vestibular/anormalidadesRESUMO
Non-canonical splice site variants are increasingly recognized as a relevant cause of the USH2A-associated diseases, non-syndromic autosomal recessive retinitis pigmentosa and Usher syndrome type 2. Many non-canonical splice site variants have been reported in public databases, but an effect on pre-mRNA splicing has only been functionally verified for a subset of these variants. In this study, we aimed to extend the knowledge regarding splicing events by assessing a selected set of USH2A non-canonical splice site variants and to study their potential pathogenicity. Eleven non-canonical splice site variants were selected based on four splice prediction tools. Ten different USH2A constructs were generated and minigene splice assays were performed in HEK293T cells. An effect on pre-mRNA splicing was observed for all 11 variants. Various events, such as exon skipping, dual exon skipping and partial exon skipping were observed and eight of the tested variants had a full effect on splicing as no conventionally spliced mRNA was detected. We demonstrated that non-canonical splice site variants in USH2A are an important contributor to the genetic etiology of the associated disorders. This type of variant generally should not be neglected in genetic screening, both in USH2A-associated disease as well as other hereditary disorders. In addition, cases with these specific variants may now receive a conclusive genetic diagnosis.
Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células HEK293 , Precursores de RNA , Proteínas da Matriz Extracelular/genética , Mutação , Sítios de Splice de RNA/genéticaRESUMO
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical splice sites (NCSS) and deep intronic (DI) regions are difficult to predict. Multiple splice prediction tools have been developed for this purpose, with the latest tools employing deep learning algorithms. We benchmarked established and deep learning splice prediction tools on published gold standard sets of 71 NCSS and 81 DI variants in the ABCA4 gene and 61 NCSS variants in the MYBPC3 gene with functional assessment in midigene and minigene splice assays. The selection of splice prediction tools included CADD, DSSP, GeneSplicer, MaxEntScan, MMSplice, NNSPLICE, SPIDEX, SpliceAI, SpliceRover, and SpliceSiteFinder-like. The best-performing splice prediction tool for the different variants was SpliceRover for ABCA4 NCSS variants, SpliceAI for ABCA4 DI variants, and the Alamut 3/4 consensus approach (GeneSplicer, MaxEntScacn, NNSPLICE and SpliceSiteFinder-like) for NCSS variants in MYBPC3 based on the area under the receiver operator curve. Overall, the performance in a real-time clinical setting is much more modest than reported by the developers of the tools.
Assuntos
Aprendizado Profundo , Transportadores de Cassetes de Ligação de ATP/genética , Benchmarking , Humanos , Íntrons/genética , Mutação , Sítios de Splice de RNA/genética , Splicing de RNARESUMO
Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.
Assuntos
Periferinas/genética , Doenças Retinianas , Estudos de Associação Genética , Humanos , Mutação , Mutação de Sentido Incorreto , Doenças Retinianas/genéticaRESUMO
Sequence analysis of the coding regions and splice site sequences in inherited retinal diseases is not able to uncover â¼40% of the causal variants. Whole-genome sequencing can identify most of the non-coding variants, but their interpretation is still very challenging, in particular when the relevant gene is expressed in a tissue-specific manner. Deep-intronic variants in ABCA4 have been associated with autosomal-recessive Stargardt disease (STGD1), but the exact pathogenic mechanism is unknown. By generating photoreceptor precursor cells (PPCs) from fibroblasts obtained from individuals with STGD1, we demonstrated that two neighboring deep-intronic ABCA4 variants (c.4539+2001G>A and c.4539+2028C>T) result in a retina-specific 345-nt pseudoexon insertion (predicted protein change: p.Arg1514Leufs∗36), likely due to the creation of exonic enhancers. Administration of antisense oligonucleotides (AONs) targeting the 345-nt pseudoexon can significantly rescue the splicing defect observed in PPCs of two individuals with these mutations. Intriguingly, an AON that is complementary to c.4539+2001G>A rescued the splicing defect only in PPCs derived from an individual with STGD1 with this but not the other mutation, demonstrating the high specificity of AONs. In addition, a single AON molecule rescued splicing defects associated with different neighboring mutations, thereby providing new strategies for the treatment of persons with STGD1. As many genes associated with human genetic conditions are expressed in specific tissues and pre-mRNA splicing may also rely on organ-specific factors, our approach to investigate and treat splicing variants using differentiated cells derived from individuals with STGD1 can be applied to any tissue of interest.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Íntrons/genética , Degeneração Macular/congênito , Mutação/genética , Sítios de Splice de RNA/genética , Alelos , Sequência de Bases , Simulação por Computador , Éxons/genética , Humanos , Degeneração Macular/genética , Oligonucleotídeos Antissenso/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doença de StargardtRESUMO
Stargardt disease is caused by variants in the ABCA4 gene, a significant part of which are noncanonical splice site (NCSS) variants. In case a gene of interest is not expressed in available somatic cells, small genomic fragments carrying potential disease-associated variants are tested for splice abnormalities using in vitro splice assays. We recently discovered that when using small minigenes lacking the proper genomic context, in vitro results do not correlate with splice defects observed in patient cells. We therefore devised a novel strategy in which a bacterial artificial chromosome was employed to generate midigenes, splice vectors of varying lengths (up to 11.7 kb) covering almost the entire ABCA4 gene. These midigenes were used to analyze the effect of all 44 reported and three novel NCSS variants on ABCA4 pre-mRNA splicing. Intriguingly, multi-exon skipping events were observed, as well as exon elongation and intron retention. The analysis of all reported NCSS variants in ABCA4 allowed us to reveal the nature of aberrant splicing events and to classify the severity of these mutations based on the residual fraction of wild-type mRNA. Our strategy to generate large overlapping splice vectors carrying multiple exons, creating a toolbox for robust and high-throughput analysis of splice variants, can be applied to all human genes.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/congênito , Precursores de RNA/genética , Sítios de Splice de RNA , Splicing de RNA , Transportadores de Cassetes de Ligação de ATP/biossíntese , Adulto , Feminino , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Precursores de RNA/metabolismo , Doença de StargardtRESUMO
Purpose: Inherited retinal diseases (IRDs), encompassing many clinical entities affecting the retina, are classified as rare disorders. Their extreme heterogeneity made molecular screening in the era before next-generation sequencing (NGS) expensive and time-consuming. Since then, many NGS studies of IRD molecular background have been conducted in Western populations; however, knowledge of the IRD mutational spectrum in Poland is still limited. Until now, there has been almost no comprehensive analysis of this particular population regarding the molecular basis and inheritance of IRDs. Therefore, the purpose of this study was to gain knowledge about the type and prevalence of causative variants in the Polish population. Methods: We recruited 190 Polish families with non-syndromic IRDs, including Stargardt disease (STGD), retinitis pigmentosa (RP), cone- and cone-rod dystrophy (CD/CRD), achromatopsia, and congenital stationary night blindness. A pool of molecular inversion probes was used, which targeted 108 genes associated with non-syndromic IRDs known in 2013. We applied filtering for known variants occurring with an allele frequency >0.5% in public and in-house databases, with the exception of variants in ABCA4, when the frequency filter was set to 3.0%. Hypomorphic p.(Asn1868Ile) was added manually. In the case of novel missense or splicing variants, we used in silico prediction software to assess mutation causality. Results: We detected causative mutations in 115 of the 190 families with non-syndromic IRD (60.2%). Fifty-nine individuals with STGD, RP, and CD/CRD carried causal variants in ABCA4. Novel single nucleotide variants were found in ABCA4, CEP290, EYS, MAK, and CNGA3. The complex allele c.[1622T>C;3113C>T], p.[Leu541Pro;Ala1038Val] was found in 33 individuals with ABCA4-associated disorders, which makes it the most prevalent allele in the Polish population (17% of all solved cases). Diagnosis was reevaluated in 16 cases. Conclusions: Previously, there were no comprehensive reports of IRDs in the Polish population. This study is the first to indicate that the most common IRDs in Poland are ABCA4-associated diseases, regardless of the phenotype. In Polish patients with RP, the second most prevalent causal gene was RHO and the third RPGR, while there were not as many mutations in EYS as in Western populations. The number of initial erroneous diagnoses may be the result of limited access to diagnostics with advanced tools, such as electroretinography; however, it is necessary to raise awareness among Polish ophthalmologists of rare IRDs. Additionally, it must be emphasized that in some cases genetic analysis of the patient is necessary to achieve an accurate diagnosis.