Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Imaging ; 17: 1536012118787322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039729

RESUMO

Reseeding of decellularized organ scaffolds with a patient's own cells has promise for eliminating graft versus host disease. This study investigated whether ultrasound imaging or magnetic resonance imaging (MRI) can track the reseeding of murine liver scaffolds with silica-labeled or iron-labeled liver hepatocytes. Mesoporous silica particles were created using the Stöber method, loaded with Alexa Flour 647 fluorophore, and conjugated with protamine sulfate, glutamine, and glycine. Fluorescent iron oxide particles were obtained from a commercial source. Liver cells from donor mice were loaded with the silica particles or iron oxide particles. Donor livers were decellularized and reperfused with silica-labeled or iron-labeled cells. The reseeded livers were longitudinally analyzed with ultrasound imaging and MRI. Liver biopsies were imaged with confocal microscopy and scanning electron microscopy. Ultrasound imaging had a detection limit of 0.28 mg/mL, while MRI had a lower detection limit of 0.08 mg/mL based on particle weight. The silica-loaded cells proliferated at a slower rate compared to iron-loaded cells. Ultrasound imaging, MRI, and confocal microscopy underestimated cell numbers relative to scanning electron microscopy. Ultrasound imaging had the greatest underestimation due to coarse resolution compared to the other imaging modalities. Despite this underestimation, both ultrasound imaging and MRI successfully tracked the longitudinal recellularization of liver scaffolds.


Assuntos
Compostos Férricos/química , Fígado/metabolismo , Dióxido de Silício/química , Animais , Fígado/citologia , Fígado/diagnóstico por imagem , Fígado/ultraestrutura , Imageamento por Ressonância Magnética , Camundongos SCID , Ultrassonografia
2.
Sci Eng Ethics ; 16(4): 639-67, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20567932

RESUMO

Digital imaging has provided scientists with new opportunities to acquire and manipulate data using techniques that were difficult or impossible to employ in the past. Because digital images are easier to manipulate than film images, new problems have emerged. One growing concern in the scientific community is that digital images are not being handled with sufficient care. The problem is twofold: (1) the very small, yet troubling, number of intentional falsifications that have been identified, and (2) the more common unintentional, inappropriate manipulation of images for publication. Journals and professional societies have begun to address the issue with specific digital imaging guidelines. Unfortunately, the guidelines provided often do not come with instructions to explain their importance. Thus they deal with what should or should not be done, but not the associated 'why' that is required for understanding the rules. This article proposes 12 guidelines for scientific digital image manipulation and discusses the technical reasons behind these guidelines. These guidelines can be incorporated into lab meetings and graduate student training in order to provoke discussion and begin to bring an end to the culture of "data beautification".


Assuntos
Ética em Pesquisa , Guias como Assunto , Processamento de Imagem Assistida por Computador/ética , Fotografação/ética , Ciência/ética , Códigos de Ética , Compressão de Dados/ética , Má Conduta Científica
3.
Methods Mol Biol ; 931: 1-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23026995

RESUMO

The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20-25% of the papers contained at least one figure that did not comply with the journal's instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science's reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered.


Assuntos
Processamento de Imagem Assistida por Computador , Artefatos , Processamento Eletrônico de Dados , Guias como Assunto , Humanos , Gestão da Informação , Armazenamento e Recuperação da Informação , Revisão da Pesquisa por Pares/normas , Má Conduta Científica , Software
4.
J Appl Toxicol ; 26(4): 356-67, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16773642

RESUMO

The kidney is a known target organ for arsenic and is critical for both arsenic biotransformation and elimination. Previous studies have demonstrated that at high doses (ppm) inorganic arsenic is toxic to mitochondria primarily by affecting cellular respiration. However, the effect of inorganic arsenic on mitochondria after low level exposures is not known, particularly in the kidney. Thus the functional and morphological effects of low level inorganic arsenic were investigated in a human proximal tubular cell line, HK-2. Mitochondrial function was assessed at subcytotoxic concentrations of arsenite (< or = 10 microm) by examining the alteration of the mitochondrial membrane potential using MitoTracker Red, a mitochondrion selective dye. In a subset of cells, subcytotoxic arsenite led to mitochondrial membrane depolarization, which could subsequently lead to permeability transition and apoptosis. Subcytotoxic arsenite also induced translocation of phosphatidylserine, indicative of early-stage apoptosis. To confirm whether subcytotoxic arsenite induces cellular and/or mitochondrial morphological alterations consistent with initiated apoptosis, HK-2 cells were evaluated with transmission electron microscopy. Classic morphology of apoptosis was not observed with subcytotoxic arsenite exposures; however, evidence of necrotic changes in the cytoplasmic structure and mitochondrial morphology were apparent. Therefore, based on depolarization of mitochondria and the externalization of phosphatidylserine, HK-2 cells appear to initiate apoptosis following subcytotoxic arsenite insult, but morphological changes indicate that HK-2 cells fail to complete apoptosis and ultimately undergo necrosis. Therefore, subcytotoxic arsenite can be sufficiently toxic to mitochondria that they lose their ability to keep the cell on course for apoptotic cell death.


Assuntos
Apoptose , Arsenitos/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos de Sódio/toxicidade , Arseniatos/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Corantes Fluorescentes , Humanos , Túbulos Renais Proximais/ultraestrutura , Potenciais da Membrana , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/efeitos dos fármacos , Compostos Orgânicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa