Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Med ; 7(1): 27-9, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11135610

RESUMO

A new investigation into Duchenne muscular dystrophy (DMD) pathogenesis suggests that at least part of the muscle degeneration observed in DMD patients may result from the reduced production of muscle membrane-associated neuronal nitric oxide synthase. This reduction may lead to impaired regulation of the vasoconstrictor response and eventual muscle damage.


Assuntos
Distrofia Muscular de Duchenne/fisiopatologia , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico/fisiologia , Vasoconstrição/fisiologia , Humanos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Óxido Nítrico Sintase Tipo I
2.
J Cell Biol ; 150(6): 1399-410, 2000 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-10995444

RESUMO

Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex.


Assuntos
Proteínas Associadas à Distrofina , Distrofina , Distrofias Musculares/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação/fisiologia , Núcleo Celular/patologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Distrofina/química , Distrofina/genética , Distrofina/metabolismo , Éxons , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Microssomos/química , Microssomos/metabolismo , Contração Muscular/genética , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/análise , Proteínas Musculares/metabolismo , Distrofias Musculares/patologia , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Estrutura Terciária de Proteína , Utrofina
3.
J Cell Biol ; 145(1): 153-65, 1999 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-10189375

RESUMO

The dystrophin-glycoprotein complex (DGC) is a multisubunit complex that spans the muscle plasma membrane and forms a link between the F-actin cytoskeleton and the extracellular matrix. The proteins of the DGC are structurally organized into distinct subcomplexes, and genetic mutations in many individual components are manifested as muscular dystrophy. We recently identified a unique tetraspan-like dystrophin-associated protein, which we have named sarcospan (SPN) for its multiple sarcolemma spanning domains (Crosbie, R.H., J. Heighway, D.P. Venzke, J.C. Lee, and K.P. Campbell. 1997. J. Biol. Chem. 272:31221-31224). To probe molecular associations of SPN within the DGC, we investigated SPN expression in normal muscle as a baseline for comparison to SPN's expression in animal models of muscular dystrophy. We show that, in addition to its sarcolemma localization, SPN is enriched at the myotendinous junction (MTJ) and neuromuscular junction (NMJ), where it is a component of both the dystrophin- and utrophin-glycoprotein complexes. We demonstrate that SPN is preferentially associated with the sarcoglycan (SG) subcomplex, and this interaction is critical for stable localization of SPN to the sarcolemma, NMJ, and MTJ. Our experiments indicate that assembly of the SG subcomplex is a prerequisite for targeting SPN to the sarcolemma. In addition, the SG- SPN subcomplex functions to stabilize alpha-dystroglycan to the muscle plasma membrane. Taken together, our data provide important information about assembly and function of the SG-SPN subcomplex.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/fisiologia , Distrofina/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Distrofia Muscular Animal/metabolismo , Proteínas de Neoplasias , Sequência de Aminoácidos , Animais , Transporte Biológico , Células CHO , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cricetinae , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Distroglicanas , Distrofina/deficiência , Distrofina/genética , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Junção Neuromuscular/metabolismo , Coelhos , Sarcoglicanas , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Alinhamento de Sequência , Especificidade da Espécie , Tendões/metabolismo , Transfecção , Utrofina
4.
J Cell Biol ; 142(6): 1461-71, 1998 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-9744877

RESUMO

Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the alpha-sarcoglycan gene. To determine how alpha-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed alpha-sarcoglycan- deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy, showed ongoing muscle necrosis with age, a hallmark of the human disease. Sgca-null mice also revealed loss of sarcolemmal integrity, elevated serum levels of muscle enzymes, increased muscle masses, and changes in the generation of absolute force. Molecular analysis of Sgca-null mice demonstrated that the absence of alpha-sarcoglycan resulted in the complete loss of the sarcoglycan complex, sarcospan, and a disruption of alpha-dystroglycan association with membranes. In contrast, no change in the expression of epsilon-sarcoglycan (alpha-sarcoglycan homologue) was observed. Recombinant alpha-sarcoglycan adenovirus injection into Sgca-deficient muscles restored the sarcoglycan complex and sarcospan to the membrane. We propose that the sarcoglycan-sarcospan complex is requisite for stable association of alpha-dystroglycan with the sarcolemma. The Sgca-deficient mice will be a valuable model for elucidating the pathogenesis of sarcoglycan deficient limb-girdle muscular dystrophies and for the development of therapeutic strategies for this disease.


Assuntos
Proteínas do Citoesqueleto/deficiência , Glicoproteínas de Membrana/deficiência , Distrofia Muscular Animal/etiologia , Proteínas de Neoplasias , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/biossíntese , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/genética , DNA Complementar , Progressão da Doença , Distrofina/metabolismo , Técnicas de Transferência de Genes , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Contração Muscular , Distrofia Muscular Animal/fisiopatologia , Sarcoglicanas , Sarcolema/metabolismo
5.
FEBS Lett ; 427(2): 279-82, 1998 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-9607328

RESUMO

The dystrophin-glycoprotein complex is a multi-subunit protein complex that spans the muscle plasma membrane (sarcolemma) and forms a link between the intracellular cytoskeleton and the extracellular matrix. Caveolin-3, the muscle specific form of caveolin, is also a major structural and regulatory integral membrane protein found at the sarcolemma. Oligomers of caveolin-3 form the structural framework for small membrane pockets known as caveolae. We directly examined whether caveolin-3 is an integral component of the dystrophin-glycoprotein complex by examining four common biochemical and cellular properties of proteins integrally bound to the dystrophin-glycoprotein complex. We found that caveolin-3 de-enriches with partial purification of the dystrophin-glycoprotein complex although a small amount of caveolin-3 is present. Sucrose gradient fractionation and laminin affinity chromatography completely separate this residual caveolin-3 from the core components of the dystrophin-glycoprotein complex. We also show that caveolin-3 expression at the sarcolemma is not reduced in patients with primary mutations in either dystrophin or the sarcoglycans. This data demonstrates that localization of caveolin-3 to the sarcolemma occurs independently of the dystrophin-glycoprotein complex and that caveolin-3 is not an integral component of the dystrophin-glycoprotein complex.


Assuntos
Caveolinas , Distrofina/química , Glicoproteínas de Membrana/química , Proteínas de Membrana/análise , Animais , Caveolina 3 , Cromatografia de Afinidade/métodos , Proteínas do Citoesqueleto/análise , Distroglicanas , Distrofina/análise , Humanos , Laminina , Substâncias Macromoleculares , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/química , Distrofias Musculares , Coelhos , Sarcolema/química
6.
FEBS Lett ; 468(1): 79-83, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10683445

RESUMO

Dystroglycan is a cytoskeleton-linked extracellular matrix receptor expressed in many cell types. Dystroglycan is composed of alpha- and beta-subunits which are encoded by a single mRNA. Using a heterologous mammalian expression system, we provide the first biochemical evidence of the alpha/beta-dystroglycan precursor propeptide prior to enzymatic cleavage. This 160 kDa dystroglycan propeptide is processed into alpha- and beta-dystroglycan (120 kDa and 43 kDa, respectively). We also demonstrate that the precursor propeptide is glycosylated and that blockade of asparagine-linked (N-linked) glycosylation did not prevent the cleavage of the dystroglycan precursor peptide. However, inhibition of N-linked glycosylation results in aberrant trafficking of the alpha- and beta-dystroglycan subunits to the plasma membrane. Thus, dystroglycan is synthesized as a precursor propeptide that is post-translationally cleaved and differentially glycosylated to yield alpha- and beta-dystroglycan.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Glicoproteínas de Membrana/biossíntese , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Meios de Cultivo Condicionados/metabolismo , Citomegalovirus/genética , Proteínas do Citoesqueleto/genética , Distroglicanas , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Glicosilação , Immunoblotting , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Peso Molecular , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , RNA Mensageiro/metabolismo , Coelhos , Transfecção , Tunicamicina/metabolismo
7.
J Muscle Res Cell Motil ; 16(5): 509-18, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8567938

RESUMO

The contribution of the extended and bent forms of caldesmon to its function was investigated by examining chemically modified forms of this protein. The bent 'hairpin' form of caldesmon was enhanced between pH 6.0 and 8.0 and at low ionic strengths, as reported by an increase in excimer fluorescence of pyrene-labelled caldesmon under these conditions. The presence of nucleotides also produced significant conformational changes in caldesmon, as detected by fluorescence measurements and protease digestions. Titrations of pyrene caldesmon with actin, heavy meromyosin, and calmodulin resulted in a decrease in excimer fluorescence. The function of the bent form of caldesmon was investigated by using intramolecular 1-ethyl-3-(3-dimethylamino propyl) carbodiimide-crosslinked caldesmon. The inhibition of acto-S-1 ATPase activity by crosslinked caldesmon was less efficient compared with that by pyrene modified and control caldesmons. Caldesmon's ability to switch from an activator to an inhibitor of actin-activated ATPase of myosin was also affected by the folding. Cosedimentation experiments revealed normal binding of crosslinked caldesmon to smooth muscle myosin. These results indicate the importance of caldesmon's transition from extended to folded forms and suggest possible functional roles for these different forms of caldesmon.


Assuntos
Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/fisiologia , Actinas/farmacologia , Animais , Calmodulina/farmacologia , Reagentes de Ligações Cruzadas , Cisteína/química , Endopeptidases/farmacologia , Etildimetilaminopropil Carbodi-Imida/química , Corantes Fluorescentes , Músculo Esquelético/química , Subfragmentos de Miosina/farmacologia , Nucleotídeos/química , Conformação Proteica , Pirenos , Coelhos
8.
Biochem Biophys Res Commun ; 184(1): 239-45, 1992 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-1567431

RESUMO

The interactions of caldesmon and S1 with the C-terminus of actin were examined in co-sedimentation experiments using proteolytically truncated actin. It is shown that removal of 6 residues from the C-terminus of actin reduces the binding of caldesmon by about 50% while improving the binding of S1 to actin. We also show that S1 protects actin's C-terminus from enzymatic cleavage. Both S1 and caldesmon binding to actin are decreased in the presence of an actin C-terminal peptide. These results emphasize the importance of the C-terminus of actin in binding to S1 and caldesmon.


Assuntos
Actinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Subfragmentos de Miosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Actinas/isolamento & purificação , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Corantes Fluorescentes , Soros Imunes , Cinética , Dados de Sequência Molecular , Músculos/metabolismo , Subfragmentos de Miosina/isolamento & purificação , Naftalenossulfonatos , Fragmentos de Peptídeos/isolamento & purificação , Ligação Proteica , Coelhos
9.
Biophys J ; 67(5): 1957-64, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7858132

RESUMO

In this study, we use fluorescent probes and proteolytic digestions to demonstrate structural coupling between distant regions of actin. We show that modifications of Cys-374 in the C-terminus of actin slow the rate of nucleotide exchange in the nucleotide cleft. Conformational coupling between the C-terminus and the DNasal loop in subdomain II is observed in proteolytic digestion experiments in which a new C-terminal cleavage site is exposed upon DNasel binding. The functional consequences of C-terminal modification are evident from S-1 ATPase activity and the in vitro motility experiments with modified actins. Pyrene actin, labeled at Cys-374, activates S-1 ATPase activity only half as well as control actin. This reduction is attributed to a lower Vmax value because the affinity of pyrene actin to S-1 is not significantly altered. The in vitro sliding velocity of pyrene actin is also decreased. However, IAEDANS labeling of actin (also at Cys-374) enhances the Vmax of acto-S-1 ATPase activity and the in vitro sliding velocity by approximately 25%. These results are discussed in terms of conformational coupling between distant regions in actin and the functional implications of the interactions of actin-binding proteins with the C-terminus of actin.


Assuntos
Actinas/química , Actinas/metabolismo , Animais , Sítios de Ligação , Fenômenos Biofísicos , Biofísica , Corantes Fluorescentes , Técnicas In Vitro , Estrutura Molecular , Miosinas/metabolismo , Naftalenossulfonatos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Polímeros/química , Polímeros/metabolismo , Conformação Proteica , Coelhos , Relação Estrutura-Atividade
10.
Biochemistry ; 33(11): 3210-6, 1994 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-8136356

RESUMO

N-Terminal yeast actin mutants were used to assess the role of N-terminal acidic residues in the interactions of caldesmon with actin. The yeast actins differed only in their N-terminal charge: wild type, two negative charges; 4Ac, four negative charges; DNEQ, neutral charge; delta DSE, one positive charge. Caldesmon inhibition of actomyosin subfragment 1 ATPase was affected by alterations in the N-terminus of actin. This inhibition was similar for skeletal muscle alpha-actin and the yeast 4Ac and wild-type actins (80%), but much smaller for the neutral and deletion mutants (15%). However, cosedimentation experiments revealed similar binding of caldesmon to polymerized rabbit skeletal muscle alpha-actin and each yeast actin. This result shows that the N-terminal acidic residues of actin are not required for the binding of caldesmon to F-actin. Caldesmon-actin interactions were also examined by monitoring the polymerization of G-actin induced by caldesmon. Although the final extent of polymerization was similar for all actins tested, the rates of polymerization differed. Skeletal muscle and 4Ac actins had similar rates of polymerization, and the wild-type actin polymerized at a slower rate. The neutral and deletion mutants had even slower rates of polymerization by caldesmon. The slow polymerization of DNEQ G-actin was traced to a greatly reduced binding of caldesmon to this mutant G-actin when compared to wild-type and alpha-actin. MgCl2-induced actin polymerization proceeded at identical rates for all actins.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Actinas/química , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Ligação a Calmodulina/farmacologia , Saccharomyces cerevisiae/genética , Actinas/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Eletroquímica , Cloreto de Magnésio/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Subfragmentos de Miosina , Miosinas/antagonistas & inibidores , Polímeros , Espectrometria de Fluorescência , Relação Estrutura-Atividade
11.
J Biol Chem ; 272(50): 31221-4, 1997 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-9395445

RESUMO

The dystrophin-glycoprotein complex is a multisubunit protein complex that spans the sarcolemma and forms a link between the subsarcolemmal cytoskeleton and the extracellular matrix. Primary mutations in the genes encoding the proteins of this complex are associated with several forms of muscular dystrophy. Here we report the cloning and characterization of sarcospan, a unique 25-kDa member of this complex. Topology algorithms predict that sarcospan contains four transmembrane spanning helices with both N- and C-terminal domains located intracellularly. Phylogenetic analysis reveals that sarcospan's arrangement in the membrane as well as its primary sequence are similar to that of the tetraspan superfamily of proteins. Sarcospan co-localizes and co-purifies with the dystrophin-glycoprotein complex, demonstrating that it is an integral component of the complex. We also show that sarcospan expression is dramatically reduced in muscle from patients with Duchenne muscular dystrophy. This suggests that localization of sarcospan to the membrane is dependent on proper dystrophin expression. The gene encoding sarcospan maps to human chromosome 12p11.2, which falls within the genetic locus for congenital fibrosis of the extraocular muscle, an autosomal dominant muscular dystrophy.


Assuntos
Proteínas de Transporte/química , Distrofina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/química , Músculo Esquelético/química , Proteínas de Neoplasias , Sarcolema/química , Adulto , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Substâncias Macromoleculares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Peso Molecular , Músculo Esquelético/metabolismo , Estrutura Secundária de Proteína , Coelhos , Sarcolema/metabolismo
12.
Hum Mol Genet ; 9(13): 2019-27, 2000 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-10942431

RESUMO

Autosomal recessive limb girdle muscular dystrophies 2C-2F represent a family of diseases caused by primary mutations in the sarcoglycan genes. We show that sarcospan, a novel tetraspan-like protein, is also lost in patients with either a complete or partial loss of the sarcoglycans. In particular, sarcospan was absent in a gamma-sarcoglycanopathy patient with normal levels of alpha-, beta- and delta-sarcoglycan. Thus, it is likely that assembly of the complete, tetrameric sarcoglycan complex is a prerequisite for membrane targeting and localization of sarcospan. Based on our findings that sarcospan is integrally associated with the sarcoglycans, we screened >50 autosomal recessive muscular dystrophy cases for mutations in sarcospan. Although we identified three intragenic polymorphisms, we did not find any cases of muscular dystrophy associated with primary mutations in the sarcospan gene. Finally, we have identified an important case of limb girdle muscular dystrophy and cardiomyopathy with normal expression of sarcospan. This patient has a primary mutation in the gamma-sarcoglycan gene, which causes premature truncation of gamma-sarcoglycan without affecting assembly of the mutant gamma-sarcoglycan into a complex with alpha-, beta- and delta-sarcoglycan and sarcospan. This is the first demonstration that membrane expression of a mutant sarcoglycan-sarcospan complex is insufficient in preventing muscular dystrophy and cardiomyopathy and that the C-terminus of gamma-sarcoglycan is critical for the functioning of the entire sarcoglycan-sarcospan complex. These findings are important as they contribute to a greater understanding of the structural determinants required for proper sarcoglycan-sarcospan expression and function.


Assuntos
Proteínas de Transporte/metabolismo , Aberrações Cromossômicas/genética , Proteínas do Citoesqueleto/metabolismo , Distrofina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Proteínas de Neoplasias , Adulto , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Transporte/genética , Aberrações Cromossômicas/metabolismo , Transtornos Cromossômicos , Proteínas do Citoesqueleto/genética , Análise Mutacional de DNA , Éxons , Feminino , Imunofluorescência , Genes Recessivos , Humanos , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Distrofias Musculares/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Ligação Proteica , Sarcoglicanas
13.
Hum Mol Genet ; 7(5): 823-9, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9536086

RESUMO

In skeletal muscle, neuronal nitric oxide synthase (nNOS) is anchored to the sarcolemma via the dystrophin-glycoprotein complex. When dystrophin is absent, as in Duchenne muscular dystrophy patients and in mdx mice, nNOS is mislocalized to the interior of the muscle fiber where it continues to produce nitric oxide. This has led to the hypothesis that free radical toxicity from mislocalized nNOS may contribute to mdx muscle pathology. To test this hypothesis directly, we generated mice devoid of both nNOS and dystrophin. Overall, the nNOS-dystrophin null mice maintained the dystrophic characteristics of mdx mice. We evaluated the mice for several features of the dystrophic phenotype, including membrane damage and muscle morphology. Removal of nNOS did not alter the extent of sarcolemma damage, which is a hallmark of the dystrophic phenotype. Furthermore, muscle from nNOS-dystrophin null mice maintain the histological features of mdx pathology. Our results demonstrate that relocalization of nNOS to the cytosol does not contribute significantly to mdx pathogenesis.


Assuntos
Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/enzimologia , Distrofia Muscular Animal/patologia , Neurônios/enzimologia , Óxido Nítrico Sintase/genética , Animais , Citosol/enzimologia , Feminino , Membranas Intracelulares/enzimologia , Membranas Intracelulares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa