Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1658-1670, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752349

RESUMO

BACKGROUND: Polyphosphate (polyP), a procoagulant released from platelets, activates coagulation via the contact system and modulates cardiomyocyte viability. High-dose intravenous polyP is lethal in mice, presumably because of thrombosis. Previously, we showed that HRG (histidine-rich glycoprotein) binds polyP and attenuates its procoagulant effects. In this study, we investigated the mechanisms responsible for the lethality of intravenous polyP in mice and the impact of HRG on this process. METHODS: The survival of wild-type or HRG-deficient mice given intravenous synthetic or platelet-derived polyP in doses up to 50 mg/kg or saline was compared. To determine the contribution of thrombosis, the effect of FXII (factor XII) knockdown or enoxaparin on polyP-induced fibrin deposition in the lungs was examined. To assess cardiotoxicity, the ECG was continuously monitored, the levels of troponin I and the myocardial band of creatine kinase were quantified, and the viability of a cultured murine cardiomyocyte cell line exposed to polyP in the absence or presence of HRG was determined. RESULTS: In HRG-deficient mice, polyP was lethal at 30 mg/kg, whereas it was lethal in wild-type mice at 50 mg/kg. Although FXII knockdown or enoxaparin administration attenuated polyP-induced fibrin deposition in the lungs, neither affected mortality. PolyP induced dose-dependent ECG abnormalities, including heart block and ST-segment changes, and increased the levels of troponin and myocardial band of creatine kinase, effects that were more pronounced in HRG-deficient mice than in wild-type mice and were attenuated when HRG-deficient mice were given supplemental HRG. Consistent with its cardiotoxicity, polyP reduced the viability of cultured cardiomyocytes in a dose-dependent manner, an effect attenuated with supplemental HRG. CONCLUSIONS: High-dose intravenous polyP is cardiotoxic in mice, and HRG modulates this effect.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Polifosfatos , Proteínas , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Polifosfatos/toxicidade , Proteínas/metabolismo , Proteínas/genética , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Masculino , Fibrina/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Relação Dose-Resposta a Droga , Trombose/prevenção & controle , Trombose/induzido quimicamente , Trombose/metabolismo , Trombose/genética , Trombose/patologia , Troponina I/metabolismo , Modelos Animais de Doenças , Cardiotoxicidade , Linhagem Celular , Eletrocardiografia , Coagulação Sanguínea/efeitos dos fármacos
2.
J Pathol ; 250(1): 95-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595971

RESUMO

Prekallikrein (PKK, also known as Fletcher factor and encoded by the gene KLKB1 in humans) is a component of the contact system. Activation of the contact system has been implicated in lethality in fulminant sepsis models. Pneumonia is the most frequent cause of sepsis. We sought to determine the role of PKK in host defense during pneumosepsis. To this end, mice were infected with the common human pathogen Klebsiella pneumoniae via the airways, causing an initially localized infection of the lungs with subsequent bacterial dissemination and sepsis. Mice were treated with a selective PKK-directed antisense oligonucleotide (ASO) or a scrambled control ASO for 3 weeks prior to infection. Host response readouts were determined at 12 or 36 h post-infection, including genome-wide messenger RNA profiling of lungs, or mice were followed for survival. PKK ASO treatment inhibited constitutive hepatic Klkb1 mRNA expression by >80% and almost completely abolished plasma PKK activity. Klkb1 mRNA could not be detected in lungs. Pneumonia was associated with a progressive decline in PKK expression in mice treated with control ASO. PKK ASO administration was associated with a delayed mortality, reduced bacterial burdens, and diminished distant organ injury. While PKK depletion did not influence lung pathology or neutrophil recruitment, it was associated with an upregulation of multiple innate immune signaling pathways in the lungs already prior to infection. Activation of the contact system could not be detected, either during infection in vivo or at the surface of Klebsiella in vitro. These data suggest that circulating PKK confines pro-inflammatory signaling in the lung by a mechanism that does not involve contact system activation, which in the case of respiratory tract infection may impede early protective innate immunity. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Imunidade Inata , Infecções por Klebsiella/enzimologia , Klebsiella pneumoniae/patogenicidade , Pulmão/enzimologia , Pneumonia Bacteriana/enzimologia , Pré-Calicreína/metabolismo , Sepse/enzimologia , Animais , Modelos Animais de Doenças , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Pré-Calicreína/genética , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle , Transdução de Sinais
3.
Am J Respir Cell Mol Biol ; 63(1): 46-56, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176858

RESUMO

Goblet cell metaplasia, excessive mucus production, and inadequate mucus clearance accompany and exacerbate multiple chronic respiratory disorders, such as asthma and chronic obstructive pulmonary disease. Notch signaling plays a central role in controlling the fate of multiple cell types in the lung, including goblet cells. In the present study, we explored the therapeutic potential of modulating the Notch pathway in the adult murine lung using chemically modified antisense oligonucleotides (ASOs). To this end, we designed and characterized ASOs targeting the Notch receptors Notch1, Notch2, and Notch3 and the Notch ligands Jag1 (Jagged 1) and Jag2 (Jagged 2). Pulmonary delivery of ASOs in healthy mice or mice exposed to house dust mite, a commonly used mouse model of asthma, resulted in a significant reduction of the respective mRNAs in the lung. Furthermore, ASO-mediated knockdown of Jag1 or Notch2 in the lungs of healthy adult mice led to the downregulation of the club cell marker Scgb1a1 and the concomitant upregulation of the ciliated cell marker FoxJ1 (forkhead box J1). Similarly, ASO-mediated knockdown of Jag1 or Notch2 in the house dust mite disease model led to reduced goblet cell metaplasia and decreased mucus production. Because goblet cell metaplasia and excessive mucus secretion are a common basis for many lung pathologies, we propose that ASO-mediated inhibition of JAG1 could provide a novel therapeutic path for the treatment of multiple chronic respiratory diseases.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Proteína Jagged-1/metabolismo , Pulmão/efeitos dos fármacos , Metaplasia/tratamento farmacológico , Metaplasia/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Mol Ther ; 27(10): 1749-1757, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31351782

RESUMO

Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the CFTR gene. Therapeutic approaches that are focused on correcting CFTR protein face the challenge of the heterogeneity in CFTR mutations and resulting defects. Thus, while several small molecules directed at CFTR show benefit in the clinic for subsets of CF patients, these drugs cannot treat all CF patients. Additionally, the clinical benefit from treatment with these modulators could be enhanced with novel therapies. To address this unmet need, we utilized an approach to increase CFTR protein levels through antisense oligonucleotide (ASO)-mediated steric inhibition of 5' UTR regulatory elements. We identified ASOs to upregulate CFTR protein expression and confirmed the regulatory role of the sites amenable to ASO-mediated upregulation. Two ASOs were investigated further, and both increased CFTR protein expression and function in cell lines and primary human bronchial epithelial cells with distinct CF genotypes. ASO treatment further increased CFTR function in almost all CF genotypes tested on top of treatment with the FDA approved drug Symdeko (ivacaftor and tezacaftor). Thus, we present a novel approach to CFTR therapeutic intervention, through ASO-mediated modulation of translation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Regulação para Cima , Regiões 5' não Traduzidas , Aminofenóis/farmacologia , Animais , Benzodioxóis/farmacologia , Linhagem Celular , Combinação de Medicamentos , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Células HeLa , Humanos , Indóis/farmacologia , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/química , Quinolonas/farmacologia
5.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L187-L196, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358441

RESUMO

High-molecular-weight kininogen is an important substrate of the kallikrein-kinin system. Activation of this system has been associated with aggravation of hallmark features in asthma. We aimed to determine the role of kininogen in enhanced pause (Penh) measurements and lung inflammation in a house dust mite (HDM)-induced murine asthma model. Normal wild-type mice and mice with a genetic deficiency of kininogen were subjected to repeated HDM exposure (sensitization on days 0, 1, and 2; challenge on days 14, 15, 18, and 19) via the airways to induce allergic lung inflammation. Alternatively, kininogen was depleted after HDM sensitization by twice-weekly injections of a specific antisense oligonucleotide (kininogen ASO) starting at day 3. In kininogen-deficient mice HDM induced in Penh was completely prevented. Remarkably, kininogen deficiency did not modify HDM-induced eosinophil/neutrophil influx, T helper 2 responses, mucus production, or lung pathology. kininogen ASO treatment started after HDM sensitization reduced plasma kininogen levels by 75% and reproduced the phenotype of kininogen deficiency: kininogen ASO administration prevented the HDM-induced increase in Penh without influencing leukocyte influx, Th2 responses, mucus production, or lung pathology. This study suggests that kininogen could contribute to HDM-induced rise in Penh independently of allergic lung inflammation. Further research is warranted to confirm these data using invasive measurements of airway responsiveness.


Assuntos
Asma/imunologia , Cininogênios/deficiência , Pulmão/imunologia , Pyroglyphidae/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/patologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Cininogênios/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th2/patologia
6.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L397-L405, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122754

RESUMO

High-molecular-weight kininogen (HK), together with factor XI, factor XII and prekallikrein, is part of the contact system that has proinflammatory, prothrombotic, and vasoactive properties. We hypothesized that HK plays a role in the host response during pneumonia-derived sepsis. To this end mice were depleted of kininogen (KNG) to plasma HK levels of 28% of normal by repeated treatment with a specific antisense oligonucleotide (KNG ASO) for 3 wk before infection with the common human sepsis pathogen Klebsiella pneumoniae via the airways. Whereas plasma HK levels increased during infection in mice treated with a scrambled control ASO (Ctrl ASO), HK level in the KNG ASO-treated group remained reduced to 25-30% of that in the corresponding Ctrl ASO group both before and after infection. KNG depletion did not influence bacterial growth in lungs or dissemination to distant body sites. KNG depletion was associated with lower lung CXC chemokine and myeloperoxidase levels but did not impact neutrophil influx, lung pathology, activation of the vascular endothelium, activation of the coagulation system, or the extent of distant organ injury. These results were corroborated by studies in mice with a genetic deficiency of KNG, which were indistinguishable from wild-type mice during Klebsiella-induced sepsis. Both KNG depletion and KNG deficiency were associated with strongly reduced plasma prekallikrein levels, indicating the carrier function of HK for this zymogen. This study suggests that KNG does not significantly contribute to the host defense during gram-negative pneumonia-derived sepsis.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Cininogênios/fisiologia , Infecções por Klebsiella/complicações , Klebsiella pneumoniae/imunologia , Pneumonia Bacteriana/complicações , Sepse/imunologia , Animais , Coagulação Sanguínea , Fator XII/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Infecções por Klebsiella/microbiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pneumonia Bacteriana/microbiologia , Sepse/etiologia , Sepse/patologia
7.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L799-L809, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136609

RESUMO

Pneumonia is the most frequent cause of sepsis, and Klebsiella pneumoniae is a common pathogen in pneumonia and sepsis. Infection is associated with activation of the coagulation system. Coagulation can be activated by the extrinsic and intrinsic routes, mediated by factor VII (FVII) and factor XII (FXII), respectively. To determine the role of FVII and FXII in the host response during pneumonia-derived sepsis, mice were treated with specific antisense oligonucleotide (ASO) directed at FVII or FXII for 3 wk before infection with K. pneumoniae via the airways. FVII ASO treatment strongly inhibited hepatic FVII mRNA expression, reduced plasma FVII to ~25% of control, and selectively prolonged the prothrombin time. FXII ASO treatment strongly suppressed hepatic FXII mRNA expression, reduced plasma FXII to ~20% of control, and selectively prolonged the activated partial thromboplastin time. Lungs also expressed FVII mRNA, which was not altered by FVII ASO administration. Very low FXII mRNA levels were detected in lungs, which were not modified by FXII ASO treatment. FVII ASO attenuated systemic activation of coagulation but did not influence fibrin deposition in lung tissue. FVII ASO enhanced bacterial loads in lungs and mitigated sepsis-induced distant organ injury. FXII inhibition did not affect any of the host response parameters measured. These results suggest that partial inhibition of FVII, but not of FXII, modifies the host response to gram-negative pneumonia-derived sepsis.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Fator XII/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , RNA Mensageiro/metabolismo , Sepse/metabolismo
8.
Nucleic Acids Res ; 42(13): 8796-807, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992960

RESUMO

Triantennary N-acetyl galactosamine (GalNAc, GN3: ), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6-10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2'-O-Et-2',4'-bridged nucleic acid) gapmer ASOs, ∼ 60-fold enhancement in potency relative to the parent MOE (2'-O-methoxyethyl RNA) ASO was observed. GN3: -conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3: -ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3: -ASO conjugate was detected in plasma suggesting that GN3: acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs.


Assuntos
Galactosamina/análogos & derivados , Glicolipídeos/química , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Animais , Apolipoproteína C-III/genética , Receptor de Asialoglicoproteína/metabolismo , Fator XI/antagonistas & inibidores , Galactosamina/química , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos Antissenso/metabolismo , Pré-Albumina/antagonistas & inibidores , alfa 1-Antitripsina
9.
Blood ; 119(10): 2401-8, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22246038

RESUMO

A strategy to produce sufficient anticoagulant properties with reduced risk of bleeding may be possible through inhibition of factor XI (FXI), a component of the intrinsic coagulation cascade. The objective of this work was to determine the safety profile of ISIS 416858, a 2'-methoxyethoxy (2'-MOE) antisense oligonucleotide inhibitor of FXI, with focus on assessment of bleeding risk. Cynomolgus monkeys administered ISIS 416858 (4, 8, 12, and 40 mg/kg/wk, subcutaneous) for up to 13 weeks produced a dose-dependent reduction in FXI (mRNA in liver and plasma activity) and a concomitant increase in activated partial thromboplastin time (APTT). ISIS 416858 (20 or 40 mg/kg/wk) reduced plasma FXI activity by 80% at 4 weeks of treatment that resulted in a 33% increase in APTT by 13 weeks with no effects on PT, platelets, or increased bleeding following partial tail amputation or gum and skin laceration. The dose-dependent presence of basophilic granules in multiple tissues in ISIS 416858-treated animals was an expected histologic change for a 2'-MOE antisense oligonucleotide, and no toxicity was attributed to hepatic FXI reduction. Basophilic granules reflect cellular drug uptake and subsequent visualization on hematoxylin staining. These results suggest that ISIS 416858 has an acceptable preclinical safety profile and is a promising clinical candidate to treat thrombotic disease.


Assuntos
Fator XI/antagonistas & inibidores , Hemorragia/prevenção & controle , Oligonucleotídeos Antissenso/farmacologia , Tempo de Tromboplastina Parcial , Animais , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Fator XI/genética , Fator XI/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hemorragia/sangue , Infusões Intravenosas , Injeções Subcutâneas , Macaca fascicularis , Masculino , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Resultado do Tratamento
10.
ERJ Open Res ; 10(4)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39286058

RESUMO

Background: Hyperactivity of epithelial sodium channel (ENaC) with increased sodium absorption is a feature of cystic fibrosis (CF). ION-827359 is a 2.5-generation antisense oligonucleotide targeted to reduce ENaC protein. This study evaluated ION-827359 safety, pharmacokinetics and pharmacodynamics. Methods: In this three-part phase 1/2a, double-blind, randomised study, healthy volunteers received single doses of placebo or ION-827359 (3, 10, 37.5 or 100 mg; Part 1) or multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg or 10×37.5 mg; Part 2). People with CF (pwCF) received multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg and 5×100 mg; Part 3). Treatments were administered via Pari eFlow© mesh nebuliser. The primary outcome was safety; pharmacokinetic and pharmacodynamic parameters were also assessed. Results: 64 healthy volunteers and 34 pwCF were enrolled. ION-827359 was well tolerated with an acceptable safety profile. There were no clinically relevant changes in laboratory values, ECG or vital signs. Systemic drug exposure was low (plasma half-life ∼2 weeks). Multiple doses of ION-827359 were associated with dose-dependent reductions in ENaC mRNA in bronchial epithelium. After multiple dosing, forced expiratory volume in 1 s was slightly higher in pwCF receiving ION-827359 (+2.9% with ION-827359 100 mg versus placebo; p=0.27). Conclusions: The tolerability and safety of ION-827359 appear favourable at this stage of investigation. Reduction in ENaC mRNA supports mechanistic efficacy at the doses and regimens tested, and supports further investigation of ION-827359 in pwCF.

11.
Blood ; 118(19): 5302-11, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21821705

RESUMO

Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases.


Assuntos
Deficiência do Fator XII/sangue , Hemorragia/sangue , Hemorragia/etiologia , Pré-Calicreína/deficiência , Trombose/sangue , Trombose/prevenção & controle , Animais , Modelos Animais de Doenças , Fator XII/antagonistas & inibidores , Fator XII/genética , Deficiência do Fator XII/genética , Técnicas de Silenciamento de Genes , Hemorragia/genética , Hemostasia/genética , Hemostasia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Pré-Calicreína/antagonistas & inibidores , Pré-Calicreína/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Trombose/genética
12.
Brain Res ; 1751: 147208, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248061

RESUMO

Traumatic brain injury (TBI) is associated with increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg), which results in enhanced cerebrovascular permeability and leads to short-term memory (STM) reduction. Previously, we showed that extravasated Fg was deposited in the vasculo-astrocyte interface and was co-localized with cellular prion protein (PrPC) during mild-to-moderate TBI in mice. These effects were accompanied by neurodegeneration and STM reduction. However, there was no evidence presented that the described effects were the direct result of the HFg during TBI. We now present data indicating that inhibition of Fg synthesis can ameliorate TBI-induced cerebrovascular permeability and STM reduction. Cortical contusion injury (CCI) was induced in C57BL/6J mice. Then mice were treated with either Fg antisense oligonucleotide (Fg-ASO) or with control-ASO for two weeks. Cerebrovascular permeability to fluorescently labeled bovine serum albumin was assessed in cortical venules following evaluation of STM with memory assessement tests. Separately, brain samples were collected in order to define the expression of PrPC via Western blotting while deposition and co-localization of Fg and PrPC, as well as gene expression of inflammatory marker activating transcription factor 3 (ATF3), were characterized with real-time PCR. Results showed that inhibition of Fg synthesis with Fg-ASO reduced overexpression of AFT3, ameliorated enhanced cerebrovascular permeability, decreased expression of PrPC and Fg deposition, decreased formation of Fg-PrPC complexes in brain, and improved STM. These data provide direct evidence that a CCI-induced inflammation-mediated HFg could be a triggering mechanism involved in vascular cognitive impairment seen previously in our studies during mild-to-moderate TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Disfunção Cognitiva/metabolismo , Fibrinogênio/metabolismo , Fator 3 Ativador da Transcrição/análise , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Fibrinogênio/antagonistas & inibidores , Fibrinogênio/biossíntese , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Proteínas Priônicas/análise , RNA Antissenso/farmacologia
13.
Blood Adv ; 5(18): 3540-3551, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34474475

RESUMO

Histidine-rich glycoprotein (HRG) is an abundant plasma protein that binds factor XIIa (FXIIa) and inhibits factor XII (FXII) autoactivation and FXIIa-mediated activation of FXI. Polyphosphate (polyP), a potent procoagulant released from activated platelets, may serve as a physiological activator of the contact system. Previously, we showed that HRG binds DNA and neutralizes its procoagulant activity. Consequently, our goal was to determine whether the capacity of HRG to bind polyanions enables it to regulate polyP-induced thrombosis. In a plate-based assay, immobilized polyP bound HRG, FXII, and FXIIa in a zinc-dependent manner. Basal and polyP-induced thrombin generation was greater in plasma from HRG-deficient mice than in plasma from wild-type mice. Intraperitoneal injection of polyP shortened the activated partial thromboplastin time, enhanced thrombin generation, increased thrombin-antithrombin levels, reduced lung perfusion, and promoted pulmonary fibrin deposition to a greater extent in HRG-deficient mice than in wild-type mice, effects that were abrogated with FXII knockdown. HRG thus attenuates the procoagulant and prothrombotic effects of polyP in an FXII-dependent manner by modulating the contact system.


Assuntos
Fator XII , Trombose , Animais , Coagulação Sanguínea , Fator XII/genética , Camundongos , Polifosfatos , Proteínas , Trombose/induzido quimicamente
14.
J Cyst Fibros ; 18(3): 334-341, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30100257

RESUMO

BACKGROUND: The epithelial sodium channel ENaC consists of three subunits encoded by Scnn1a, Scnn1b, and Scnn1g and increased sodium absorption through this channel is hypothesized to lead to mucus dehydration and accumulation in cystic fibrosis (CF) patients. METHODS: We identified potent and specific antisense oligonucleotides (ASOs) targeting mRNAs encoding the ENaC subunits and evaluated these ASOs in mouse models of CF-like lung disease. RESULTS: ASOs designed to target mRNAs encoding each ENaC subunit or a control ASO were administered directly into the lungs of mice. The reductions in ENaC subunits correlated well with a reduction in amiloride sensitive channel conductance. In addition, levels of mucus markers Gob5, AGR2, Muc5ac, and Muc5b, periodic acid-Schiff's reagent (PAS) goblet cell staining, and neutrophil recruitment were reduced and lung function was improved when levels of any of the ENaC subunits were decreased. CONCLUSIONS: Delivery of ASOs targeting mRNAs encoding each of the three ENaC subunits directly into the lung improved disease phenotypes in a mouse model of CF-like lung disease. These findings suggest that targeting ENaC subunits could be an effective approach for the treatment of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Canais Epiteliais de Sódio , Oligonucleotídeos Antissenso/metabolismo , Sódio/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Modelos Animais de Doenças , Canais Epiteliais de Sódio/classificação , Canais Epiteliais de Sódio/genética , Marcação de Genes/métodos , Transporte de Íons/fisiologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Muco/metabolismo , RNA Mensageiro/metabolismo
15.
EBioMedicine ; 29: 92-103, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29463471

RESUMO

Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα-/- as well as in macrophage-specific IL-4Rα-/- (IL-4RαΔLysM) mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. RESEARCH IN CONTEXT: Alternative (M2-type) macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression.


Assuntos
Subunidade alfa de Receptor de Interleucina-4/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Transdução de Sinais , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Subunidade alfa de Receptor de Interleucina-4/genética , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Células RAW 264.7 , Fator de Transcrição STAT6/metabolismo , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
J Cyst Fibros ; 16(6): 671-680, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28539224

RESUMO

BACKGROUND: Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. METHODS: We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. RESULTS: The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. CONCLUSIONS: Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung.


Assuntos
Fibrose Cística , Canais Epiteliais de Sódio/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Mucosa Respiratória , Administração por Inalação , Animais , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Camundongos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia , Medicamentos para o Sistema Respiratório/farmacologia , Resultado do Tratamento
18.
J Med Chem ; 59(6): 2718-33, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26914862

RESUMO

The comprehensive structure-activity relationships of triantennary GalNAc conjugated ASOs for enhancing potency via ASGR mediated delivery to hepatocytes is reported. Seventeen GalNAc clusters were assembled from six distinct scaffolds and attached to ASOs. The resulting ASO conjugates were evaluated in ASGR binding assays, in primary hepatocytes, and in mice. Five structurally distinct GalNAc clusters were chosen for more extensive evaluation using ASOs targeting SRB-1, A1AT, FXI, TTR, and ApoC III mRNAs. GalNAc-ASO conjugates exhibited excellent potencies (ED50 0.5-2 mg/kg) for reducing the targeted mRNAs and proteins. This work culminated in the identification of a simplified tris-based GalNAc cluster (THA-GN3), which can be efficiently assembled using readily available starting materials and conjugated to ASOs using a solution phase conjugation strategy. GalNAc-ASO conjugates thus represent a viable approach for enhancing potency of ASO drugs in the clinic without adding significant complexity or cost to existing protocols for manufacturing oligonucleotide drugs.


Assuntos
Acetilgalactosamina/síntese química , Acetilgalactosamina/farmacologia , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/farmacologia , Animais , Apolipoproteína C-III/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fator XI/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Depuradores Classe B/biossíntese , Receptores Depuradores Classe B/genética , Relação Estrutura-Atividade
19.
Nucleic Acid Ther ; 25(6): 297-305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390010

RESUMO

The tissue half-life of second-generation antisense oligonucleotide drugs (ASOs) is generally longer than traditional small molecule therapeutics. Thus, a strategy to reverse the activity of antisense drugs is warranted in certain settings. In this study, we describe a strategy employing the administration of a complementary sense oligonucleotide antidote (SOA). As a model system we have chosen to target the coagulation factor and antithrombotic drug target, prothrombin, to assess the feasibility of this approach. ASO targeting mouse prothrombin specifically suppressed >90% hepatic prothrombin mRNA levels and circulating prothrombin protein in mice. These effects were dose- and time-dependent, and as expected produced predictable increases in anticoagulation activity [prothrombin time/activated partial thromboplastin time (PT/aPTT)]. Treatment with prothrombin SOAs resulted in a dose-dependent reversal of ASO activity, as measured by a return in prothrombin mRNA levels and thrombin activity, and normalization of aPTT and PT. The antithrombotic activity of prothrombin ASOs was demonstrated in a FeCl3-induced thrombosis mouse model, and as predicted for this target, the doses required for antithrombotic activity were also associated with increased bleeding. Treatment with SOA was able to prevent prothrombin ASO-induced bleeding in a dose-dependent manner. These studies demonstrate for the first time the utility of SOAs to selectively and specifically reverse the intracellular effects of an antisense therapy.


Assuntos
Oligonucleotídeos Antissenso/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Protrombina/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligonucleotídeos Antissenso/farmacologia
20.
J Cardiovasc Transl Res ; 6(6): 969-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23856914

RESUMO

Antisense oligonucleotides and small interfering RNAs, which suppress the translation of specific mRNA target proteins, are emerging as important therapeutic modalities for the treatment of cardiovascular disease. Over the last 25 years, the advances in all aspects of antisense technology, as well as a detailed understanding of the mechanism of action of antisense drugs, have enabled their use as therapeutic agents. These advancements culminated in the FDA approval of the first chronically administered cardiovascular antisense therapeutic, mipomersen, which targets hepatic apolipoprotein B mRNA. This review provides a brief history of antisense technology, highlights the progression of mipomersen from preclinical studies to multiple Phase III registration trials, and gives an update on the status of other cardiovascular antisense therapeutics currently in the clinic.


Assuntos
Doenças Cardiovasculares/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/uso terapêutico , Animais , Anticolesterolemiantes/uso terapêutico , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/terapia , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Oligonucleotídeos/uso terapêutico , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa