Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205097

RESUMO

Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.


Assuntos
Vasos Linfáticos , Semaforinas , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30877134

RESUMO

Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.


Assuntos
Vasos Linfáticos/fisiologia , Células-Tronco/fisiologia , Veias/fisiologia , Peixe-Zebra/fisiologia , Animais , Movimento Celular/fisiologia , Células Endoteliais/fisiologia
3.
Development ; 141(13): 2680-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24903752

RESUMO

Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.


Assuntos
Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/deficiência , Fator D de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Primers do DNA/genética , Hibridização In Situ , Linfangiogênese/genética , Microscopia Confocal , Morfolinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
4.
Development ; 139(13): 2381-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22627281

RESUMO

We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.


Assuntos
Linfangiogênese , Sistema Linfático/crescimento & desenvolvimento , Vasos Linfáticos/fisiologia , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Regiões Promotoras Genéticas , Proteínas de Transporte Vesicular/genética , Proteínas de Peixe-Zebra/genética
5.
Cytometry A ; 85(6): 537-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664821

RESUMO

Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation.


Assuntos
Ecotoxicologia , Preparações Farmacêuticas/administração & dosagem , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Descoberta de Drogas , Ecotoxicologia/instrumentação , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Humanos , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
6.
Blood ; 116(6): 909-14, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20453160

RESUMO

Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


Assuntos
Aorta , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Aorta/citologia , Aorta/embriologia , Aorta/fisiologia , Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células Endoteliais/citologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Rim/citologia , Rim/embriologia , Rim/fisiologia , Masculino , Fluxo Sanguíneo Regional/fisiologia , Timo/citologia , Timo/embriologia , Timo/fisiologia , Ativação Transcricional/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Dev Dyn ; 240(1): 288-98, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21181946

RESUMO

Inflammatory bowel disease (IBD) results from dysfunctional interactions between the intestinal immune system and microbiota, influenced by host genetic susceptibility. Because a key feature of the pathology is intestinal epithelial damage, potential disease factors have been traditionally analyzed within the background of chemical colitis models in mice. The zebrafish has greatly complemented the mouse for modeling aspects of disease processes, with an advantage for high content drug screens. Larval zebrafish exposed to the haptenizing agent trinitrobenzene sulfonic acid (TNBS) displayed impaired intestinal homeostasis and inflammation reminiscent of human IBD. There was a marked induction of pro-inflammatory cytokines, the degradative enzyme mmp9 and leukocytosis. Enterocolitis was dependent on microbiota and Toll-like receptor signaling, that can be ameliorated by antibiotic and anti-inflammatory drug treatments. This system will be useful to rapidly interrogate in vivo the biological significance of the IBD candidate genes so far identified and to carry out pharmacological modifier screens.


Assuntos
Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Enterocolite/microbiologia , Enterocolite/prevenção & controle , Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Embrião não Mamífero , Enterocolite/induzido quimicamente , Enterocolite/patologia , Trato Gastrointestinal/irrigação sanguínea , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Haptenos/imunologia , Haptenos/metabolismo , Humanos , Larva , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Ácido Trinitrobenzenossulfônico , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
8.
Genesis ; 49(12): 905-11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21557452

RESUMO

A number of heat shock proteins (HSPs), including Hsp70 and Hsp110, function as molecular chaperones within intestinal epithelial cells that line the mammalian digestive system. HSPs confer cellular protection against environmental stress induced by chemical toxins or pathogens. There is interest in how members of this protein family might influence the progression of inflammatory bowel disease. Using the zebrafish model system, we report the expression of the duplicated hspa4 genes within the intestinal epithelium. The hspa4 genes belong to the Hsp110 family. We show that under inflammatory stress conditions within the gut, expression of these genes is up-regulated in a similar manner to that previously observed for mammalian Hsp70. Because of the amenability of the zebrafish to whole-animal screening protocols, the hspa4 genes could be used as effective read-outs for genetic, chemical and environmental factors that might influence intestinal inflammation.


Assuntos
Proteínas de Choque Térmico HSP110/genética , Inflamação/genética , Regulação para Cima , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Western Blotting , Proteínas de Choque Térmico HSP110/metabolismo , Mucosa Intestinal/metabolismo , Modelos Animais , Estresse Fisiológico , Transcrição Gênica , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
9.
Dev Biol ; 344(2): 637-49, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20553708

RESUMO

Contact between sister chromatids from S phase to anaphase depends on cohesin, a large multi-subunit protein complex. Mutations in sister chromatid cohesion proteins underlie the human developmental condition, Cornelia de Lange syndrome. Roles for cohesin in regulating gene expression, sometimes in combination with CCCTC-binding factor (CTCF), have emerged. We analyzed zebrafish embryos null for cohesin subunit rad21 using microarrays to determine global effects of cohesin on gene expression during embryogenesis. This identified Rad21-associated gene networks that included myca (zebrafish c-myc), p53 and mdm2. In zebrafish, cohesin binds to the transcription start sites of p53 and mdm2, and depletion of either Rad21 or CTCF increased their transcription. In contrast, myca expression was strongly downregulated upon loss of Rad21 while depletion of CTCF had little effect. Depletion of Rad21 or the cohesin-loading factor Nipped-B in Drosophila cells also reduced expression of myc and Myc target genes. Cohesin bound the transcription start site plus an upstream predicted CTCF binding site at zebrafish myca. Binding and positive regulation of the c-Myc gene by cohesin is conserved through evolution, indicating that this regulation is likely to be direct. The exact mechanism of regulation is unknown, but local changes in histone modification associated with transcription repression at the myca gene were observed in rad21 mutants.


Assuntos
Peixe-Zebra/metabolismo , Anáfase , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Síndrome de Cornélia de Lange/genética , Drosophila/genética , Drosophila/metabolismo , Genes myc , Humanos , Proteínas Repressoras , Fase S , Peixe-Zebra/genética , Coesinas
10.
Blood ; 113(6): 1241-9, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18927441

RESUMO

The transcription factor Runx1 is essential for the development of definitive hematopoietic stem cells (HSCs) during vertebrate embryogenesis and is transcribed from 2 promoters, P1 and P2, generating 2 major Runx1 isoforms. We have created 2 stable runx1 promoter zebrafish-transgenic lines that provide insight into the roles of the P1 and P2 isoforms during the establishment of definitive hematopoiesis. The Tg(runx1P1:EGFP) line displays fluorescence in the posterior blood island, where definitive erythromyeloid progenitors develop. The Tg(runx1P2:EGFP) line marks definitive HSCs in the aorta-gonad-mesonephros, with enhanced green fluorescent protein-labeled cells later populating the pronephros and thymus. This suggests that a function of runx1 promoter switching is associated with the establishment of discrete definitive blood progenitor compartments. These runx1 promoter-transgenic lines are novel tools for the study of Runx1 regulation and function in normal and malignant hematopoiesis. The ability to visualize and isolate fluorescently labeled HSCs should contribute to further elucidating the complex regulation of HSC development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Precursoras Eritroides/citologia , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Southern Blotting , Linhagem da Célula , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Hematopoese , Técnicas Imunoenzimáticas , Hibridização In Situ , Mesonefro/citologia , Mesonefro/embriologia , Isoformas de Proteínas , Peixe-Zebra
11.
Dev Dyn ; 239(7): 2128-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20549745

RESUMO

Lymphangiogenesis induced during tumor growth contributes to metastasis. Genetic and chemical screens using the zebrafish model have the potential to enhance our understanding of lymphangiogenesis, and lead to the discovery of pharmacological agents with activity in the lymphatic system. Large-scale screening of lymphatic development in the whole zebrafish embryo requires a specific lymphatic endothelial cell marker. We isolated the zebrafish ortholog of Lyve1, and analyzed its expression pattern during embryogenesis, and under conditions where key regulators of lymphangiogenesis such as Prox1 and VegfC were depleted. Like humans, zebrafish embryos form lymph sacs, lymphangioblasts arise from venous endothelia, and they form asymmetric left and right collecting ducts. By monitoring the earliest lymphatic sprouting in the head, a pilot drug assay was performed showing rapamycin, an inhibitor of mammalian lymphangiogenesis, can also suppress zebrafish lymphangiogenesis. This work opens up a novel opportunity to further the understanding of, and potentially manipulate, human lymphangiogenesis.


Assuntos
Linfangiogênese/fisiologia , Neoplasias/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Hibridização In Situ , Linfangiogênese/efeitos dos fármacos , Linfangiogênese/genética , Camundongos , Sirolimo/farmacologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Biochem Biophys Res Commun ; 400(1): 164-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20709024

RESUMO

Reactive oxygen species (ROS) function in a range of physiological processes such as growth, metabolism and signaling, and also have a pathological role. Recent research highlighted the requirement for ROS generated by dual oxidase (DUOX) in host-defence responses in innate immunity and inflammatory disorders such as inflammatory bowel disease (IBD), but in vivo evidence to support this has, to date, been lacking. In order to investigate the involvement of Duox in gut immunity, we characterized the zebrafish ortholog of the human DUOX genes. Zebrafish duox is highly expressed in intestinal epithelial cells. Knockdown of Duox impaired larval capacity to control enteric Salmonella infection.


Assuntos
Mucosa Intestinal/enzimologia , NADPH Oxidases/fisiologia , Peixe-Zebra/metabolismo , Animais , Técnicas de Silenciamento de Genes , Larva/enzimologia , NADPH Oxidases/classificação , NADPH Oxidases/genética , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium , Peixe-Zebra/microbiologia
13.
Gastroenterology ; 135(5): 1665-75, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18804112

RESUMO

BACKGROUND & AIMS: The ParaHox transcription factor Cdx2 is an essential determinant of intestinal phenotype in mammals throughout development, influencing gut function, homeostasis, and epithelial barrier integrity. Cdx2 expression demarcates the zones of intestinal stem cell proliferation in the adult gut, with deregulated expression implicated in intestinal metaplasia and cancer. However, in vivo analysis of these prospective roles has been limited because inactivation of Cdx2 in mice leads to preimplantation embryonic lethality. We used the zebrafish, a valuable model for studying gut development, to generate a system to further understanding of the role of Cdx2 in normal intestinal function and in disease states. METHODS: We isolated and characterized the zebrafish cdx1b ortholog and analyzed its function by antisense morpholino gene knockdown. RESULTS: We showed that zebrafish Cdx1b replaces the role of Cdx2 in gut development. Evolutionary studies have indicated that the zebrafish cdx2 loci were lost following the genome-wide duplication event that occurred in teleosts. Zebrafish Cdx1b is expressed exclusively in the developing intestine during late embryogenesis and regulates intestinal cell proliferation and terminal differentiation. CONCLUSIONS: This work established an in vivo system to explore further the activity of Cdx2 in the gut and its impact on processes such as inflammation and cancer.


Assuntos
DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Intestinos/embriologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose , Fator de Transcrição CDX2 , Proliferação de Células , Enterócitos/citologia , Enterócitos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Zebrafish ; 16(2): 171-181, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30724716

RESUMO

Chemical interventions are regularly used to examine and manipulate macrophage function in larval zebrafish. Given chemicals are typically administered by simple immersion or injection, it is not possible to resolve whether their impact on macrophage function is direct or indirect. Liposomes provide an attractive strategy to target drugs to specific cellular compartments, including macrophages. As an example, injecting liposomal clodronate into animal models, including zebrafish, is routinely used to deliver toxic levels of clodronate specifically to macrophages for targeted cell ablation. Here we show that liposomes can also target the delivery of drugs to zebrafish macrophages to selectively manipulate their function. We utilized the drugs etomoxir (a fatty acid oxidation inhibitor) and MitoTEMPO (a scavenger of mitochondrial reactive oxygen species [mROS]), that we have previously shown, through free drug delivery, suppress monosodium urate (MSU) crystal-driven macrophage activation. We generated poloxamer 188 modified liposomes that were readily phagocytosed by macrophages, but not by neutrophils. Loading these liposomes with etomoxir or MitoTEMPO and injecting into larvae suppressed macrophage activation in response to MSU crystals, as evidenced by proinflammatory cytokine expression and macrophage-driven neutrophil recruitment. This work reveals the utility of packaging drugs into liposomes as a strategy to selectively manipulate macrophage function.


Assuntos
Sistemas de Liberação de Medicamentos/veterinária , Compostos de Epóxi/química , Lipossomos/metabolismo , Macrófagos/metabolismo , Compostos Organofosforados/química , Piperidinas/química , Peixe-Zebra , Animais , Antioxidantes/química , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/química , Modelos Animais
15.
Dis Model Mech ; 11(12)2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30396905

RESUMO

Tumour angiogenesis has long been a focus of anti-cancer therapy; however, anti-angiogenic cancer treatment strategies have had limited clinical success. Tumour-associated myeloid cells are believed to play a role in the resistance of cancer towards anti-angiogenesis therapy, but the mechanisms by which they do this are unclear. An embryonic zebrafish xenograft model has been developed to investigate the mechanisms of tumour angiogenesis and as an assay to screen anti-angiogenic compounds. In this study, we used cell ablation techniques to remove either macrophages or neutrophils and assessed their contribution towards zebrafish xenograft angiogenesis by quantitating levels of graft vascularisation. The ablation of macrophages, but not neutrophils, caused a strong reduction in tumour xenograft vascularisation and time-lapse imaging demonstrated that tumour xenograft macrophages directly associated with the migrating tip of developing tumour blood vessels. Finally, we found that, although macrophages are required for vascularisation in xenografts that either secrete VEGFA or overexpress zebrafish vegfaa, they are not required for the vascularisation of grafts with low levels of VEGFA, suggesting that zebrafish macrophages can enhance Vegfa-driven tumour angiogenesis. The importance of macrophages to this angiogenic response suggests that this model could be used to further investigate the interplay between myeloid cells and tumour vascularisation.


Assuntos
Embrião não Mamífero/patologia , Macrófagos/metabolismo , Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias/imunologia
16.
J Clin Invest ; 128(5): 1752-1771, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584621

RESUMO

Gout is the most common inflammatory arthritis affecting men. Acute gouty inflammation is triggered by monosodium urate (MSU) crystal deposition in and around joints that activates macrophages into a proinflammatory state, resulting in neutrophil recruitment. A complete understanding of how MSU crystals activate macrophages in vivo has been difficult because of limitations of live imaging this process in traditional animal models. By live imaging the macrophage and neutrophil response to MSU crystals within an intact host (larval zebrafish), we reveal that macrophage activation requires mitochondrial ROS (mROS) generated through fatty acid oxidation. This mitochondrial source of ROS contributes to NF-κB-driven production of IL-1ß and TNF-α, which promote neutrophil recruitment. We demonstrate the therapeutic utility of this discovery by showing that this mechanism is conserved in human macrophages and, via pharmacologic blockade, that it contributes to neutrophil recruitment in a mouse model of acute gouty inflammation. To our knowledge, this study is the first to uncover an immunometabolic mechanism of macrophage activation that operates during acute gouty inflammation. Targeting this pathway holds promise in the management of gout and, potentially, other macrophage-driven diseases.


Assuntos
Ácidos Graxos/metabolismo , Gota/metabolismo , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Gota/induzido quimicamente , Gota/genética , Gota/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxirredução , Células THP-1 , Ácido Úrico/toxicidade , Peixe-Zebra
17.
FEBS J ; 284(3): 402-413, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27885812

RESUMO

By performing two high-content small molecule screens on dextran sodium sulfate- and trinitrobenzene sulfonic acid-induced zebrafish enterocolitis models of inflammatory bowel disease, we have identified novel anti-inflammatory drugs from the John Hopkins Clinical Compound Library that suppress neutrophilic inflammation. Live imaging of neutrophil distribution was used to assess the level of acute inflammation and concurrently screen for off-target drug effects. Supporting the validity of our screening strategy, most of the anti-inflammatory drug hits were known antibiotics or anti-inflammatory agents. Novel hits included cholecystokinin (CCK) and dopamine receptor agonists. Using a pharmacological approach, we show that while CCK and dopamine receptor agonists alleviate enterocolitis-associated inflammation, receptor antagonists exacerbate inflammation in zebrafish. This work highlights the utility of small molecule screening in zebrafish enterocolitis models as a tool to identify novel bioactive molecules capable of modulating acute inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Disbiose/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Fatores Imunológicos/farmacologia , Animais , Animais Geneticamente Modificados , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/imunologia , Doença de Crohn/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Disbiose/induzido quimicamente , Disbiose/imunologia , Disbiose/patologia , Embrião não Mamífero , Expressão Gênica , Humanos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores da Colecistocinina/agonistas , Receptores da Colecistocinina/genética , Receptores da Colecistocinina/imunologia , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ácido Trinitrobenzenossulfônico , Peixe-Zebra
18.
Sci Rep ; 7(1): 12657, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978916

RESUMO

The circadian clock, which evolved to help organisms harmonize physiological responses to external conditions (such as the light/dark cycle, LD), is emerging as an important regulator of the immune response to infection. Gaining a complete understanding of how the circadian clock influences the immune cell response requires animal models that permit direct observation of these processes within an intact host. Here, we investigated the use of larval zebrafish, a powerful live imaging system, as a new model to study the impact of a fundamental zeitgeber, light, on the innate immune cell response to infection. Larvae infected during the light phase of the LD cycle and in constant light condition (LL) demonstrated enhanced survival and bacterial clearance when compared with larvae infected during the dark phase of the LD cycle and in constant dark condition (DD). This increased survival was associated with elevated expression of the zebrafish orthologues of the mammalian pro-inflammatory cytokine genes, Tumour necrosis factor-α, Interleukin-8 and Interferon-γ, and increased neutrophil and macrophage recruitment. This study demonstrates for the first time that the larval zebrafish innate immune response to infection is enhanced during light exposure, suggesting that, similar to mammalian systems, the larval zebrafish response to infection is light-regulated.


Assuntos
Infecções Bacterianas/imunologia , Imunidade Inata/efeitos da radiação , Fotoperíodo , Peixe-Zebra/imunologia , Animais , Infecções Bacterianas/microbiologia , Relógios Circadianos/imunologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/imunologia , Ritmo Circadiano/efeitos da radiação , Modelos Animais de Doenças , Humanos , Larva/imunologia , Larva/microbiologia , Luz , Atividade Motora/imunologia , Atividade Motora/efeitos da radiação , Peixe-Zebra/microbiologia
19.
Int J Dev Biol ; 46(4): 493-502, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12141436

RESUMO

Studies in zebrafish have potential to contribute to understanding of the vertebrate hematopoietic and vasculogenic systems. Our research has examined the roles of several molecules in pathways that lead to the development of blood and vessels in zebrafish, and has provided insights into the regulation of these processes. Gdf6a/radar, a member of the bone morphogenetic protein (BMP) family, is expressed in the zebrafish hypochord and primitive gut endoderm; structures that flank the developing dorsal aorta and posterior cardinal vein. This pattern of expression positions Gdf6a/radar as a candidate regulator of vasculogenesis. Support for such a role has come from experiments where Gdf6a/radar function was depleted with antisense morpholino oligonucleotides. This resulted in vascular leakiness, suggesting that Gdf6a/radar is involved in maintenance of vascular integrity. The transcription factor Runx1 is known to play a critical role in mammalian definitive hematopoiesis. When Runx1 expression domains and function were analyzed in zebrafish, the importance of this gene in definitive hematopoiesis was confirmed. However there was also evidence for a wider role, including involvement in vascular development and neuropoiesis. This work has laid the foundation for an ethylnitrosourea (ENU) mutagenesis screen based on runx1 whole-mount in situ hybridzation, that aims to identify genes operative in the runx1 pathway. An additional member of the Runx family, Runx3, is also involved in developmental hematopoiesis, with a function distinct from that of Runx1. We hypothesize that Runx1 and Runx3 form a continuum of transcriptional control within the hematopoietic system. An added attraction of zebrafish is that models of human disease can be generated, and we have shown that this system has potential for the study of Runx1-mediated leukemogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 3 de Fator de Ligação ao Core , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator 6 de Diferenciação de Crescimento , Células-Tronco Hematopoéticas/citologia , Hibridização In Situ , Modelos Biológicos , Neovascularização Patológica , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes , Peixe-Zebra/fisiologia
20.
Dev Comp Immunol ; 53(1): 63-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26123890

RESUMO

Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.


Assuntos
Animais Geneticamente Modificados , Larva/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Peixe-Zebra/genética , Animais , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Hidroliases/genética , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Transplante de Neoplasias , Regiões Promotoras Genéticas/genética , Transplante Heterólogo , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa