Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 34(2): e2940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212051

RESUMO

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5-10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB-induced changes to forest structure and fuels increased the fire hazard 20 years post-treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.


Assuntos
Ecossistema , Incêndios Florestais , Animais , Florestas , Árvores , Carbono , Pinus ponderosa
2.
Ecol Appl ; 30(2): e02023, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31628705

RESUMO

In the western United States, restoration of forests with historically frequent, low-severity fire regimes often includes fuel reduction that reestablish open, early-seral conditions while reducing fuel continuity and loading. Between 2001 and 2016, fuel reduction (e.g., thinning, prescribed burning, etc.) was implemented on over 26 million hectares of federal lands alone in the United States, reflecting the urgency to mitigate risk from high-severity wildfire. However, between 2001 and 2012, nearly 20 million hectares in the United States were impacted by mountain pine beetle (MPB; Dendroctonus ponderosae), compounding restoration effects in wildfire-hazard-treated stands. Knowledge of the effects of treatments followed by natural disturbance on long-term forest structure and communities is needed, especially considering that fuel treatments are increasingly being implemented and warming climate is predicted to exacerbate disturbance frequency and severity. We tested the interacting effects of treatments designed to reduce high-severity wildfire hazard in stands subsequently challenged by MPB outbreak on vegetation dynamics using a factorial experimental design (control, thin only, burn only, thin + burn) in a ponderosa pine (Pinus ponderosa)-dominated forest. Stands were treated by 2002, then impacted by MPB outbreak from 2005 to 2012. We assessed change in overstory and understory forest community structure, composition, and diversity over time. There were distinct thinning, burning, and year effects. Thinning immediately reduced overstory density; pine density then declined 4.5 times more in unthinned than thinned treatments due to MPB. Burning immediately reduced graminoid, shrub, and total understory cover by as much as 52%, resulting in greater species evenness than unburned treatments, but differences disappeared by 2016 due to growth and MPB outbreak. Similarly, multivariate analyses indicated forest communities were starkly different after treatment but became more similar over time, though key understory and overstory attributes still distinguish control and thin + burn. This study shows the value of long-term silvicultural experiments to evaluate treatment longevity and the compounded effects of treatment and natural disturbance. We demonstrate the homogenizing effects of treatment-induced growth coupled with MPB-caused tree mortality on management strategies that just treat the overstory (thinning) or understory (burning), showing that only combined treatments can provide the unique structural and compositional outcomes expected of restoration.


Assuntos
Besouros , Incêndios , Pinus , Animais , Surtos de Doenças , Florestas , Casca de Planta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa