RESUMO
Respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, the current study examined a series of consecutive fatal cases of coronavirus disease 2019 (COVID-19) that came to autopsy at 27 to 51 days after hospital admission. In each patient, a stereotyped bronchiolar-alveolar pattern of lung remodeling was identified with basal epithelial cell hyperplasia, immune activation, and mucinous differentiation. Remodeling regions featured macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This pattern closely resembled findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. Together, these results provide evidence of basal epithelial cell reprogramming in long-term COVID-19 and thereby yield a pathway for explaining and correcting lung dysfunction in this type of disease.
Assuntos
COVID-19 , Humanos , Reprogramação Celular , SARS-CoV-2 , Pulmão , Células EpiteliaisRESUMO
PURPOSE: The recent publication of the ACOSOG Z1031 trial results demonstrated that Ki-67 proliferation marker-based neoadjuvant endocrine therapy response monitoring could be used for tailoring the use of adjuvant chemotherapy in ER+HER2-negative breast cancer patients. In this paper, we describe the development of the Ki-67 clinical trial assay used for this study. METHODS: Ki-67 assay assessment focused on reproducing a 2.7% Ki-67 cut-point (CP) required for calculating the Preoperative Endocrine Prognostic Index and a 10% CP for poor endocrine therapy response identification within the first month of neoadjuvant endocrine treatment. Image analysis was assessed to increase the efficiency of the scoring process. Clinical outcome concordance for two independent Ki-67 scores was the primary performance metric. RESULTS: Discordant scores led to a triage approach where cases with complex histological features that software algorithms could not resolve were flagged for visual point counting (17%). The final Ki-67 scoring approach was run on T1/2 N0 cases from the P024 and POL trials (N = 58). The percent positive agreement for the 2.7% CP was 87.5% (95% CI 61.7-98.5%); percent negative agreement 88.9% (95% CI: 65.3-98.6%). Minor discordance did not affect the ability to predict similar relapse-free outcomes (Log-Rank P = 0.044 and P = 0.055). The data for the 10% early triage CP in the POL trial were similar (N = 66), the percentage positive agreement was 100%, and percent negative agreement 93.55% (95% CI: 78.58-99.21%). The independent survival predictions were concordant (Log-rank P = 0.0001 and P = 0.01). CONCLUSIONS: We have developed an efficient and reproducible Ki-67 scoring system that was approved by the Clinical Trials Evaluation Program for NCI-supported neoadjuvant endocrine therapy trials. Using the methodology described here, investigators are able to identify a subgroup of patients with ER+HER2-negative breast cancer that can be safely managed without the need of adjuvant chemotherapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antígeno Ki-67/metabolismo , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Quimioterapia Adjuvante , Tomada de Decisão Clínica , Feminino , Humanos , Estimativa de Kaplan-Meier , Terapia Neoadjuvante , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Resultado do TratamentoRESUMO
Surfactant protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification of the immunoreceptors that bind SP-D is essential for understanding its contribution to lung homeostasis and mucosal defense. We located a putative binding motif for the osteoclast-associated receptor (OSCAR) within the SP-D collagenous domain. An OSCAR-Fc fusion protein specifically bound to the collagenous region of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2(+) inflammatory monocytes, which secreted TNF-α when exposed to SP-D in an OSCAR-dependent fashion. OSCAR and SP-D did not exclusively colocalize in lung, as they were also highly expressed in atherosclerotic plaques of human aorta, supporting a role for this interaction in atherosclerosis. Our results identify the OSCAR:SP-D interaction as a potential therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes, and release of TNF-α.
Assuntos
Inflamação/metabolismo , Monócitos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Células Espumosas/imunologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/patologia , Espaço Intracelular/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Monócitos/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
As a major player of the innate immune system, surfactant protein D (SP-D) recognizes and promotes elimination of various pathogens such as Gram-negative bacteria. SP-D binds to l-glycero-d-manno-heptose (Hep), a constituent of the partially conserved lipopolysaccharide (LPS) inner core of many Gram-negative bacteria. Binding and affinity of trimeric human SP-D to Hep in distinct LPS inner core glycans differing in linkages and adjacent residues was elucidated using glycan array and surface plasmon resonance measurements that were compared to in silico interaction studies. The combination of in vitro assays using defined glycans and molecular docking and dynamic simulation approaches provides insights into the interaction of trimeric SP-D with those glycan ligands. Trimeric SP-D wildtype recognized larger LPS inner core oligosaccharides with slightly enhanced affinity than smaller compounds suggesting the involvement of stabilizing secondary interactions. A trimeric human SP-D mutant D324N+D325N+R343K resembling rat SP-D bound to various LPS inner core structures in a similar pattern as observed for the wildtype but with higher affinity. The selective mutation of SP-D promotes targeting of LPS inner core oligosaccharides on Gram-negative bacteria to develop novel therapeutic agents.
Assuntos
Lipopolissacarídeos/química , Proteína D Associada a Surfactante Pulmonar/química , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação ProteicaRESUMO
We recently reported that a trimeric neck and carbohydrate recognition domain (NCRD) fragment of human surfactant protein D (SP-D), a host defense lectin, with combinatorial substitutions at the 325 and 343 positions (D325A+R343V) exhibits markedly increased antiviral activity for seasonal strains of influenza A virus (IAV). The NCRD binds to glycan-rich viral envelope proteins including hemagglutinin (HA). We now show that replacement of D325 with serine to create D325S+R343V provided equal or increased neutralizing activity compared with D325A+R343V. The activity of the double mutants was significantly greater than that of either single mutant (D325A/S or R343V). D325A+R343V and D325S+R343V also strongly inhibited HA activity, and markedly aggregated, the 1968 pandemic H3N2 strain, Aichi68. D325S+R343V significantly reduced viral loads and mortality of mice infected with Aichi68, whereas wild-type SP-D NCRD did not. The pandemic H1N1 strains of 1918 and 2009 have only one N-linked glycan side on the head region of the HA and are fully resistant to inhibition by native SP-D. Importantly, we now show that D325A+R343V and D325S+R343V inhibited Cal09 H1N1 and related strains, and reduced uptake of Cal09 by epithelial cells. Inhibition of Cal09 was mediated by the lectin activity of the NCRDs. All known human pandemic strains have at least one glycan attachment on the top or side of the HA head, and our results indicate that they may be susceptible to inhibition by modified host defense lectins.
Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Proteína D Associada a Surfactante Pulmonar/genética , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Resistência à Doença , Cães , Feminino , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos DBA , Mutação de Sentido Incorreto , Pandemias , Ligação Proteica , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/metabolismo , Carga ViralRESUMO
θ-Defensins are cyclic octadecapeptides found in nonhuman primates whose broad antiviral spectrum includes HIV-1, HSV-1, severe acute respiratory syndrome coronavirus, and influenza A virus (IAV). We previously reported that synthetic θ-defensins called retrocyclins can neutralize and aggregate various strains of IAV and increase IAV uptake by neutrophils. This study describes two families of peptides, hapivirins and diprovirins, whose design was inspired by retrocyclins. The goal was to develop smaller partially cyclic peptides that retain the antiviral activity of retrocyclins, while being easier to synthesize. The novel peptides also allowed for systemic substitution of key residues to evaluate the role of charge or hydrophobicity on antiviral activity. Seventy-two hapivirin or diprovirin peptides are described in this work, including several whose anti-IAV activity equals or exceeds that of normal α- or θ-defensins. Some of these also had strong antibacterial and antifungal activity. These new peptides were active against H3N2 and H1N1 strains of IAV. Structural features imparting strong antiviral activity were identified through iterative cycles of synthesis and testing. Our findings show the importance of hydrophobic residues for antiviral activity and show that pegylation, which often increases a peptide's serum t(1/2) in vivo, can increase the antiviral activity of DpVs. The new peptides acted at an early phase of viral infection, and, when combined with pulmonary surfactant protein D, their antiviral effects were additive. The peptides strongly increased neutrophil and macrophage uptake of IAV, while inhibiting monocyte cytokine generation. Development of modified θ-defensin analogs provides an approach for creating novel antiviral agents for IAV infections.
Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Defensinas/imunologia , Defensinas/farmacologia , Vírus da Influenza A/imunologia , Sequência de Aminoácidos , Animais , Antivirais/imunologia , Linhagem Celular , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Defensinas/síntese química , Cães , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Monócitos/virologia , Neutrófilos/virologia , Peptídeos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossínteseRESUMO
Epithelial injury calls for a regenerative response from a coordinated network of epithelial stem cells and immune cells. Defining this network is key to preserving the repair process for acute resolution, but also for preventing a remodeling process with chronic dysfunction. We recently identified an immune niche for basal-epithelial stem cells using mouse models of injury after respiratory viral infection. Niche function depended on an early sentinel population of monocyte-derived dendritic cells (moDCs) that provided ligand GPNMB to basal-ESC receptor CD44 for reprogramming towards chronic lung disease. These same cell and molecular control points worked directly in mouse and human basal-ESC organoids, but the findings were not yet validated in vivo in human disease. Further, persistence of GPNMB expression in moDCs and M2-macrophages in mouse models suggested utility as a long-term disease biomarker in humans. Here we show increased expression of GPNMB localized to moDC-macrophage populations in lung tissue samples from long-term Covid, asthma, and COPD. The findings thereby provide initial evidence of a persistent and correctable pathway from acute injury to chronic disease with implications for cellular reprogramming and inflammatory memory.
RESUMO
Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cells (ESCs) that are called on to regenerate damaged tissues but can also be reprogrammed for detrimental remodeling. Here we identified a Wfdc21-dependent monocyte-derived dendritic cell (moDC) population that functioned as an early sentinel niche for basal ESC reprogramming in mouse models of epithelial injury after respiratory viral infection. Niche function depended on moDC delivery of ligand GPNMB to the basal ESC receptor CD44 so that properly timed antibody blockade of ligand or receptor provided long-lasting correction of reprogramming and broad disease phenotypes. These same control points worked directly in mouse and human basal ESC organoids. Together, the findings identify a mechanism to explain and modify what is otherwise a stereotyped but sometimes detrimental response to epithelial injury.
Assuntos
Reprogramação Celular , Animais , Camundongos , Humanos , Reprogramação Celular/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Dendríticas/imunologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/genética , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Nicho de Células-Tronco/imunologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Pneumopatias/imunologia , Pneumopatias/patologia , Pneumopatias/metabolismoRESUMO
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
RESUMO
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
RESUMO
Importance: Adding fulvestrant to anastrozole (A+F) improved survival in postmenopausal women with advanced estrogen receptor (ER)-positive/ERBB2 (formerly HER2)-negative breast cancer. However, the combination has not been tested in early-stage disease. Objective: To determine whether neoadjuvant fulvestrant or A+F increases the rate of pathologic complete response or ypT1-2N0/N1mic/Ki67 2.7% or less residual disease (referred to as endocrine-sensitive disease) over anastrozole alone. Design, Setting, and Participants: A phase 3 randomized clinical trial assessing differences in clinical and correlative outcomes between each of the fulvestrant-containing arms and the anastrozole arm. Postmenopausal women with clinical stage II to III, ER-rich (Allred score 6-8 or >66%)/ERBB2-negative breast cancer were included. All analyses were based on data frozen on March 2, 2023. Interventions: Patients received anastrozole, fulvestrant, or a combination for 6 months preoperatively. Tumor Ki67 was assessed at week 4 and optionally at week 12, and if greater than 10% at either time point, the patient switched to neoadjuvant chemotherapy or immediate surgery. Main Outcomes and Measures: The primary outcome was the endocrine-sensitive disease rate (ESDR). A secondary outcome was the percentage change in Ki67 after 4 weeks of neoadjuvant endocrine therapy (NET) (week 4 Ki67 suppression). Results: Between February 2014 and November 2018, 1362 female patients (mean [SD] age, 65.0 [8.2] years) were enrolled. Among the 1298 evaluable patients, ESDRs were 18.7% (95% CI, 15.1%-22.7%), 22.8% (95% CI, 18.9%-27.1%), and 20.5% (95% CI, 16.8%-24.6%) with anastrozole, fulvestrant, and A+F, respectively. Compared to anastrozole, neither fulvestrant-containing regimen significantly improved ESDR or week 4 Ki67 suppression. The rate of week 4 or week 12 Ki67 greater than 10% was 25.1%, 24.2%, and 15.7% with anastrozole, fulvestrant, and A+F, respectively. Pathologic complete response/residual cancer burden class I occurred in 8 of 167 patients and 17 of 167 patients, respectively (15.0%; 95% CI, 9.9%-21.3%), after switching to neoadjuvant chemotherapy due to week 4 or week 12 Ki67 greater than 10%. PAM50 subtyping derived from RNA sequencing of baseline biopsies available for 753 patients (58%) identified 394 luminal A, 304 luminal B, and 55 nonluminal tumors. A+F led to a greater week 4 Ki67 suppression than anastrozole alone in luminal B tumors (median [IQR], -90.4% [-95.2 to -81.9%] vs -76.7% [-89.0 to -55.6%]; P < .001), but not luminal A tumors. Thirty-six nonluminal tumors (65.5%) had a week 4 or week 12 Ki67 greater than 10%. Conclusions and Relevance: In this randomized clinical trial, neither fulvestrant nor A+F significantly improved the 6-month ESDR over anastrozole in ER-rich/ERBB2-negative breast cancer. Aromatase inhibition remains the standard-of-care NET. Differential NET response by PAM50 subtype in exploratory analyses warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT01953588.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Idoso , Feminino , Humanos , Anastrozol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/patologia , Fulvestranto , Antígeno Ki-67 , Terapia Neoadjuvante , Nitrilas/efeitos adversos , Pós-Menopausa , Receptor ErbB-2 , Receptores de Estrogênio , Triazóis/efeitos adversos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Pessoa de Meia-IdadeRESUMO
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. Interactions of SP-D with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with that of full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have determined crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). On the basis of the D325A+R343V-Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding caused by additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V because of alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D-HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Modelos Moleculares , Proteína D Associada a Surfactante Pulmonar/química , Adesividade , Substituição de Aminoácidos , Sítios de Ligação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/metabolismo , Viabilidade Microbiana , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Conformação Proteica , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains.
Assuntos
Antivirais/farmacologia , Metabolismo dos Carboidratos , Vírus da Influenza A/efeitos dos fármacos , Proteína D Associada a Surfactante Pulmonar/farmacologia , Animais , Antivirais/química , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Cristalização , Primers do DNA , Cães , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/genética , SuínosRESUMO
LL-37, the only human cathelicidin, is a cationic antimicrobial peptide with antibacterial and antifungal activity. LL-37 is released from neutrophil granules and produced by epithelial cells. It has been implicated in host defence against influenza A virus (IAV) in recent studies. We now demonstrate dose-related neutralizing activity of LL-37 against several seasonal and mouse-adapted IAV strains. The ability of LL-37 to inhibit these IAV strains resulted mainly from direct effects on the virus, since pre-incubation of virus with LL-37 was needed for optimal inhibition. LL-37 bound high-density lipoprotein (HDL), and pre-incubation of LL-37 with human serum or HDL reduced its antiviral activity. LL-37 did not inhibit viral association with epithelial cells as assessed by quantitative RT-PCR or confocal microscopy. This finding contrasted with results obtained with surfactant protein D (SP-D). Unlike collectins or human neutrophil defensins (HNPs), LL-37 did not induce viral aggregation under electron microscopy. In the electron microscopy studies, LL-37 appeared to cause disruption of viral membranes. LL-37 had additive antiviral activity when combined with other innate inhibitors like SP-D, surfactant protein A and HNPs. Unlike HNPs, LL-37 did not bind SP-D significantly. These findings indicate that LL-37 contributes to host defence against IAV through a mechanism distinct from that of SP-D and HNPs.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Defensinas/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Peptídeos Catiônicos Antimicrobianos/imunologia , Células CHO , Colectinas/imunologia , Colectinas/metabolismo , Cricetinae , Cricetulus , Defensinas/imunologia , Cães , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Lipoproteínas HDL/imunologia , Lipoproteínas HDL/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/imunologia , CatelicidinasRESUMO
Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.
Assuntos
Proteína D Associada a Surfactante Pulmonar/metabolismo , Serpinas/genética , Animais , Líquido da Lavagem Broncoalveolar , Catepsina G/metabolismo , Feminino , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mieloblastina/metabolismo , Neutrófilos/enzimologia , Elastase Pancreática/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Proteína D Associada a Surfactante Pulmonar/genética , Serpinas/deficiênciaRESUMO
The recognition of influenza A virus (IAV) by surfactant protein D (SP-D) is mediated by interactions between the SP-D carbohydrate recognition domains (CRD) and glycans displayed on envelope glycoproteins. Although native human SP-D shows potent antiviral and aggregating activity, trimeric recombinant neck+CRDs (NCRDs) show little or no capacity to influence IAV infection. A mutant trimeric NCRD, D325A/R343V, showed marked hemagglutination inhibition and viral neutralization, with viral aggregation and aggregation-dependent viral uptake by neutrophils. D325A/R343V exhibited glucose-sensitive binding to Phil82 hemagglutinin trimer (HA) by surface plasmon resonance. By contrast, there was very low binding to the HA trimer from another virus (PR8) that lacks glycans on the HA head. Mass spectrometry demonstrated the presence of high mannose glycans on the Phil82 HA at positions known to contribute to IAV binding. Molecular modeling predicted an enhanced capacity for bridging interactions between HA glycans and D325A/R343V. Finally, the trimeric D325A/R343V NCRD decreased morbidity and increased viral clearance in a murine model of IAV infection using a reassortant A/WSN/33 virus with a more heavily glycosylated HA. The combined data support a model in which altered binding by a truncated mutant SP-D to IAV HA glycans facilitates viral aggregation, leading to significant viral neutralization in vitro and in vivo. These studies demonstrate the potential utility of homology modeling and protein structure analysis for engineering effective collectin antivirals as in vivo therapeutics.
Assuntos
Resistência à Doença/genética , Evolução Molecular , Vírus da Influenza A Subtipo H1N1/fisiologia , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/genética , Ressonância de Plasmônio de Superfície/métodos , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Cristalografia por Raios X , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Espectrometria de Massas , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteína D Associada a Surfactante Pulmonar/metabolismo , Especificidade da EspécieRESUMO
Pulmonary surfactant protein D (SP-D), a member of the collectin family, is an innate immune molecule critical for defense that can also modulate adaptive immune responses. We previously showed that SP-D-deficient mice exhibit enhanced allergic responses and that SP-D induction requires lymphocytes. Thus, we postulated that SP-D may decrease adaptive allergic responses through interaction with T cells. In this study, we used two forms of SP-D, a dodecamer and a shorter fragment containing the trimeric neck and carbohydrate recognition domains (SP-D NCRD). Both forms decreased immune responses in vitro and in a murine model of pulmonary inflammation. SP-D NCRD increased transcription of CTLA4, a negative regulator of T cell activation, in T cells. SP-D NCRD no longer decreased lymphoproliferation and IL-2 cytokine production when CTLA4 signals were abrogated. Administration of SP-D NCRD in vivo no longer decreased allergen induced responses when CTLA4 was inhibited. Our results indicate that SP-D decreases allergen responses, an effect that may be mediated by increase of CTLA4 in T cells.
Assuntos
Antígenos CD/imunologia , Inflamação/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Hipersensibilidade Respiratória/imunologia , Linfócitos T/imunologia , Alérgenos/imunologia , Animais , Antígeno CTLA-4 , Ensaio de Imunoadsorção Enzimática , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TransfecçãoRESUMO
Acquired immune responses elicited to recent strains of seasonal H1N1 influenza viruses provide limited protection against emerging A(H1N1) pandemic viruses. Accordingly, pre-existing or rapidly induced innate immune defenses are of critical importance in limiting early infection. Respiratory secretions contain proteins of the innate immune system, including members of the collectin and pentraxin superfamilies. These mediate potent antiviral activity and act as an initial barrier to influenza infection. In this study, we have examined the sensitivity of H1N1 viruses, including pandemic virus strains, for their sensitivity to collectins (surfactant protein [SP]-D and mannose-binding lectin [MBL]) and to the pentraxin PTX3. Human SP-D and MBL inhibited virus-induced hemagglutinating activity, blocked the enzymatic activity of the viral neuraminidase, and neutralized the ability of H1N1 viruses to infect human respiratory epithelial cells in a manner that correlated with the degree of glycosylation in the globular head of the hemagglutinin. Recent seasonal H1N1 viruses expressed three to four N-glycosylation sequons on the head of hemagglutinin and were very sensitive to inhibition by SP-D or MBL, whereas A(H1N1) pandemic viruses expressed a single N-glycosylation sequon and were resistant to either collectin. Of interest, both seasonal and pandemic H1N1 viruses were resistant to PTX3. Thus, unlike recent seasonal H1N1 strains of influenza virus, A(H1N1) pandemic viruses are resistant to the antiviral activities of innate immune proteins of the collectin superfamily.
Assuntos
Proteína C-Reativa/imunologia , Evasão da Resposta Imune/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Lectina de Ligação a Manose/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Componente Amiloide P Sérico/imunologia , Proteína C-Reativa/metabolismo , Colectinas/imunologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Glicosilação , Testes de Hemaglutinação , Hemaglutinação por Vírus , Hemaglutininas/química , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Lectina de Ligação a Manose/metabolismo , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Componente Amiloide P Sérico/metabolismoRESUMO
Respiratory viruses, including SARS-CoV-2, can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, we examined a series of consecutive fatal cases of Covid-19 that came to autopsy at 27-51 d after hospital admission. In each patient, we identify a stereotyped bronchiolar-alveolar pattern of lung remodeling with basal epithelial cell hyperplasia and mucinous differentiation. Remodeling regions also feature macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This entire pattern closely resembles findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. The present results thereby provide evidence of possible basal epithelial cell reprogramming in long-term Covid-19 as well and thereby a pathway for explaining and correcting lung dysfunction in this type of disease.
RESUMO
Surfactant protein D (SP-D) plays diverse and important roles in innate immunity and pulmonary homeostasis. Neutrophils and myeloperoxidase (MPO) colocalized with SP-D in a murine bacterial pneumonia model of acute inflammation, suggesting that MPO-derived reactive species might alter the function of SP-D. Exposure of SP-D to the complete MPO-H(2)O(2)-halide system caused loss of SP-D-dependent aggregating activity. Hypochlorous acid (HOCl), the major oxidant generated by MPO, caused a similar loss of aggregating activity, which was accompanied by the generation of abnormal disulfide-cross-linked oligomers. A full-length SP-D mutant lacking N-terminal cysteine residues and truncation mutants lacking the N-terminal domains were resistant to the oxidant-induced alterations in disulfide bonding. Mass spectroscopy of HOCl-treated human SP-D demonstrated several modifications, but none involved key ligand binding residues. There was detectable oxidation of cysteine 15, but no HOCl-induced cysteine modifications were observed in the C-terminal lectin domain. Together, the findings localize abnormal disulfide cross-links to the N-terminal domain. MPO-deficient mice showed decreased cross-linking of SP-D and increased SP-D-dependent aggregating activity in the pneumonia model. Thus, MPO-derived oxidants can lead to modifications of SP-D structure with associated alterations in its characteristic aggregating activity.