Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Rep Pract Oncol Radiother ; 25(1): 35-40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889918

RESUMO

AIM: This study retrospectively analysed the results of using optically stimulated radiation dosimeters (OSLDs) for in vivo dose measurements during total skin electron therapy (TSET, also known as TSEI, TSEB, TSEBT, TSI or TBE) treatments of patients with mycosis fungoides. BACKGROUND: TSET treatments are generally delivered to standing patients, using treatment plans that are devised using manual dose calculations that require verification via in vivo dosimetry. Despite the increasing use of OSLDs for radiation dosimetry, there is minimal published guidance on the use of OSLDs for TSET verification. MATERIALS AND METHODS: This study retrospectively reviewed in vivo dose measurements made during treatments of nine consecutive TSET patients, treated between 2013 and 2018. Landauer nanoDot OSLDs were used to measure the skin dose at reference locations on each patient, as well as at locations of clinical interest such as the head, hands, feet, axilla and groin. RESULTS: 1301 OSLD measurements were aggregated and analysed, producing results that were in broad agreement with previous TLD studies, while providing additional information about the variation of dose across concave surfaces and potentially guiding future refinement of treatment setup. In many cases these in vivo measurements were used to identify deviations from the planned dose in reference locations and to identify anatomical regions where additional shielding or boost treatments were required. CONCLUSIONS: OSLDs can be used to obtain measurements of TSET dose that can inform monitor unit adjustments and identify regions of under and over dosage, while potentially informing continuous quality improvement in TSET treatment delivery.

2.
J Appl Clin Med Phys ; 20(7): 193-200, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31282112

RESUMO

PURPOSE: In this work we have developed a novel method of dose distribution comparison, the inverse gamma (IG) evaluation, by modifying the commonly used gamma evaluation method. METHODS: The IG evaluation calculates the gamma criteria (dose difference criterion, ΔD, or distance-to-agreement criterion, Δd) that are needed to achieve a predefined pass rate or gamma agreement index (GAI). In-house code for evaluating IG with a fixed ΔD of 3% was developed using Python (v3.5.2) and investigated using treatment plans and measurement data from 25 retrospective patient specific quality assurance tests (53 individual arcs). RESULTS: It was found that when the desired GAI was set to 95%, approximately three quarters of the arcs tested were able to achieve Δd within 1 mm (mean Δd: 0.7 ± 0.5 mm). The mean Δd required in order for all points to pass the gamma evaluation (i.e., GAI = 100%) was 4.5 ± 3.1 mm. The possibility of evaluating IG by fixing the Δd or ΔD/Δd, instead of fixing the ΔD at 3%, was also investigated. CONCLUSION: The IG method and its indices have the potential to be implemented clinically to quantify the minimum dose and distance criteria based on a specified GAI. This method provides additional information to augment standard gamma evaluation results during patient specific quality assurance testing of individual treatment plans. The IG method also has the potential to be used in retrospective audits to determine an appropriate set of local gamma criteria and action levels based on a cohort of patient specific quality assurance plans.


Assuntos
Algoritmos , Raios gama , Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , Estudos Retrospectivos , Software
3.
J Appl Clin Med Phys ; 20(4): 99-105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30883010

RESUMO

PURPOSE: Beam matching occurs on all linacs to some degree and when two are more are matched to each other, patients are able to be transferred between machines. Quality assurance of plans can also be performed "distributively" on any of the matched linacs. The degree to which machines are matched and how this translates to like delivery of plans has been the focus of a number of studies. This concept has not yet been explored for stereotactic techniques which require a higher degree of accuracy. This study proposes beam matching criteria which allows for the distributive delivery and quality assurance of stereotactic body radiotherapy (SBRT) plans. METHOD: Two clinically relevant and complex volumetric modulated arc therapy (VMAT) SBRT spine and lung plans were chosen as benchmarking cases. These were delivered on nine previously beam matched linacs with quality assurance performed through ArcCheck and film exposure in the sagittal plane. Measured doses were compared to their treatment planning system predictions through gamma analysis at a range of criteria. RESULTS: Despite differences in beam match parameters and variations in small fields, all nine linacs produced accurate deliveries with a tight deviation in the population sample. Pass rates were well above suggested tolerances at the recommended gamma criterion. Film was able to detect dose errors to a greater degree than ArcCheck. CONCLUSION: Distributive quality assurance and delivery of stereotactic ablative radiotherapy treatments amongst beam matched linacs is certainly feasible provided the linacs are matched to a strict protocol like that suggested in this study and regular quality assurance is performed on the matched fleet. Distributive quality assurance and delivery of SBRT provides the possibility of efficiency gains for physicists as well as treatment staff.


Assuntos
Neoplasias Pulmonares/cirurgia , Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Coluna Vertebral/cirurgia , Estudos de Viabilidade , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Técnicas Estereotáxicas
4.
J Appl Clin Med Phys ; 20(11): 189-198, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31613053

RESUMO

PURPOSE: Gamma evaluation is the most commonly used technique for comparison of dose distributions for patient-specific pretreatment quality assurance in radiation therapy. Alternative dose comparison techniques have been developed but not widely implemented. This study aimed to compare and evaluate the performance of several previously published alternatives to the gamma evaluation technique, by systematically evaluating a large number of patient-specific quality assurance results. METHODS: The agreement indices (or pass rates) for global and local gamma evaluation, maximum allowed dose difference (MADD) and divide and conquer (D&C) techniques were calculated using a selection of acceptance criteria for 429 patient-specific pretreatment quality assurance measurements. Regression analysis was used to quantify the similarity of behavior of each technique, to determine whether possible variations in sensitivity might be present. RESULTS: The results demonstrated that the behavior of D&C gamma analysis and MADD box analysis differs from any other dose comparison techniques, whereas MADD gamma analysis exhibits similar performance to the standard global gamma analysis. Local gamma analysis had the least variation in behavior with criteria selection. Agreement indices calculated for 2%/2 mm and 2%/3 mm, and 3%/2 mm and 3%/3 mm were correlated for most comparison techniques. CONCLUSION: Radiation oncology treatment centers looking to compare between different dose comparison techniques, criteria or lower dose thresholds may apply the results of this study to estimate the expected change in calculated agreement indices and possible variation in sensitivity to delivery dose errors.


Assuntos
Algoritmos , Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas , Raios gama , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
5.
J Appl Clin Med Phys ; 20(3): 71-80, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30786139

RESUMO

BACKGROUND: The automated and integrated machine performance check (MPC) tool was verified against independent detectors to evaluate its beam uniformity and output detection abilities to consider it suitable for daily quality assurance (QA). METHODS: Measurements were carried out on six linear accelerators (each located at six individual sites) using clinically available photon and electron energies for a period up to 12 months (n = 350). Daily constancy checks on beam symmetry and output were compared against independent devices such as the SNC Daily QA 3, PTW Farmer ionization chamber, and SNC field size QA phantom. MPC uniformity detection of beam symmetry adjustments was also assessed. Sensitivity of symmetry and output measurements were assessed using statistical process control (SPC) methods to derive tolerances for daily machine QA and baseline resets to account for drifts in output readings. I-charts were used to evaluate systematic and nonsystematic trends to improve error detection capabilities based on calculated upper and lower control levels (UCL/LCL) derived using standard deviations from the mean dataset. RESULTS: This study investigated the vendor's method of uniformity detection. Calculated mean uniformity variations were within ± 0.5% of Daily QA 3 vertical symmetry measurements. Mean MPC output variations were within ± 1.5% of Daily QA 3 and ±0.5% of Farmer ionization chamber detected variations. SPC calculated UCL values were a measure of change observed in the output detected for both MPC and Daily QA 3. CONCLUSIONS: Machine performance check was verified as a daily quality assurance tool to check machine output and symmetry while assessing against an independent detector on a weekly basis. MPC output detection can be improved by regular SPC-based trend analysis to measure drifts in the inherent device and control systematic and random variations thereby increasing confidence in its capabilities as a QA device. A 3-monthly MPC calibration assessment was recommended based on SPC capability and acceptability calculations.


Assuntos
Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Estatística como Assunto , Calibragem , Humanos , Fótons , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
6.
J Appl Clin Med Phys ; 19(5): 453-462, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29943895

RESUMO

PURPOSE: Use of SBRT techniques is now a relatively common recourse for spinal metastases due to good local control rates and durable pain control. However, the technique has not yet reached maturity for gantry-based systems, so work is still required in finding planning approaches that produce optimum conformity as well as delivery for the slew of treatment planning systems and treatment machines. METHODS: A set of 32 SBRT spine treatment plans based on four vertebral sites, varying in modality and number of control points, were created in Pinnacle. These plans were assessed according to complexity metrics and planning objectives as well as undergoing treatment delivery QA on an Elekta VersaHD through ion chamber measurement, ArcCheck, film-dose map comparison and MLC log-file reconstruction via PerFraction. RESULTS: All methods of QA demonstrated statistically significant agreement with each other (r = 0.63, P < 0.001). Plan complexity and delivery accuracy were found to be independent of MUs (r = 0.22, P > 0.05) but improved with the number of control points (r = 0.46, P < 0.03); with use of 90 control points producing the most complex and least accurate plans. The fraction of small apertures used in treatment had no impact on plan quality or accuracy (r = 0.29, P > 0.05) but rather more complexly modulated plans showed poorer results due to MLC leaf position inaccuracies. Plans utilizing 180 and 240 control points produced optimal plan coverage with similar complexity metrics to each other. However, plans with 240 control points demonstrated slightly better delivery accuracy, with fewer MLC leaf position discrepancies. CONCLUSION: In contrast to other studies, MU had no effect on delivery accuracy, with the most impactful parameter at the disposal of the planner being the number of control points utilized.


Assuntos
Neoplasias da Coluna Vertebral/radioterapia , Neoplasias Ósseas , Humanos , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias da Coluna Vertebral/secundário
7.
J Appl Clin Med Phys ; 19(4): 239-245, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29934993

RESUMO

PURPOSE: The ability to accurately predict skin doses and thereby design radiotherapy treatments that balance the likelihood of skin reactions against other treatment objectives is especially important when hypofractionated prescription regimes are used. However, calculations of skin dose provided by many commercial radiotherapy treatment planning systems are known to be inaccurate, especially if the presence of immobilization equipment is not accurately taken into account. This study proposes a simple method by which the accuracy of skin dose calculations can be substantially improved, to allow informed evaluation of volumetric modulated arc therapy (VMAT) treatment plans. METHOD: A simple method was developed whereby dose calculation is split into grid regions, each with a correction factor which determines MU scaling for skin dose calculation. Correction factors were derived from film measurements made using a geometrically simple phantom in partial contact with a vacuum immobilization device. This method was applied to two different test treatments, planned for delivery to a humanoid phantom with a hypofractionated stereotactic body radiotherapy technique, and results were verified using film measurements of surface dose. RESULTS: Compared to the measured values, calculations of skin dose volumes corresponding to different grade tissue reactions were greatly improved through use of the method employed in this study. In some cases, the accuracy of skin dose evaluation improved by 76% and brought values to within 3% of those measured. CONCLUSION: The method of skin dose calculation in this study is simple, can be made as accurate as the user requires and is applicable for various immobilization systems. This concept has been verified through use on SBRT lung treatment plans and will aid clinicians in predicting skin response in patients.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
8.
J Appl Clin Med Phys ; 18(5): 70-79, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730740

RESUMO

This study utilizes process control techniques to identify action limits for TomoTherapy couch positioning quality assurance tests. A test was introduced to monitor accuracy of the applied couch offset detection in the TomoTherapy Hi-Art treatment system using the TQA "Step-Wedge Helical" module and MVCT detector. Individual X-charts, process capability (cp), probability (P), and acceptability (cpk) indices were used to monitor a 4-year couch IEC offset data to detect systematic and random errors in the couch positional accuracy for different action levels. Process capability tests were also performed on the retrospective data to define tolerances based on user-specified levels. A second study was carried out whereby physical couch offsets were applied using the TQA module and the MVCT detector was used to detect the observed variations. Random and systematic variations were observed for the SPC-based upper and lower control limits, and investigations were carried out to maintain the ongoing stability of the process for a 4-year and a three-monthly period. Local trend analysis showed mean variations up to ±0.5 mm in the three-monthly analysis period for all IEC offset measurements. Variations were also observed in the detected versus applied offsets using the MVCT detector in the second study largely in the vertical direction, and actions were taken to remediate this error. Based on the results, it was recommended that imaging shifts in each coordinate direction be only applied after assessing the machine for applied versus detected test results using the step helical module. User-specified tolerance levels of at least ±2 mm were recommended for a test frequency of once every 3 months to improve couch positional accuracy. SPC enables detection of systematic variations prior to reaching machine tolerance levels. Couch encoding system recalibrations reduced variations to user-specified levels and a monitoring period of 3 months using SPC facilitated in detecting systematic and random variations. SPC analysis for couch positional accuracy enabled greater control in the identification of errors, thereby increasing confidence levels in daily treatment setups.


Assuntos
Aceleradores de Partículas , Controle de Qualidade , Radioterapia de Intensidade Modulada/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Movimento (Física) , Física , Estudos Retrospectivos
9.
Phys Eng Sci Med ; 46(2): 575-583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36806158

RESUMO

Anthropomorphic phantoms with tissue equivalency are required in radiotherapy for quality assurance of imaging and dosimetric processes used in radiotherapy treatments. Commercial phantoms are expensive and provide limited approximation to patient geometry and tissue equivalency. In this study, a 5 cm thick anthropomorphic thoracic slab phantom was designed and 3D printed using models exported from a CT dataset to demonstrate the feasibility of manufacturing anthropomorphic 3D printed phantoms onsite in a clinical radiotherapy department. The 3D printed phantom was manufactured with polylactic acid with an in-fill density of 80% to simulate tissue density and 26% to simulate lung density. A common radio-opacifier, barium sulfate (BaSO4), was added 6% w/w to an epoxy resin mixture to simulate similar HU numbers for bone equivalency. A half-cylindrical shape was cropped away from the spine region to allow insertion of the bone equivalent mixture. Two Gafchromic™ EBT3 film strips were inserted into the 3D printed phantom to measure the delivery of two stereotactic radiotherapy plans targeting lung and bone lesions respectively. Results were analysed within SNC Patient with a low dose threshold of 10% and a gamma criterion of 3%/2 mm and 5%/1 mm. The resulting gamma pass rate across both criterions for lung and bone were ≥ 95% and approximately 85% respectively. Results shows that a cost-effective anthropomorphic 3D printed phantom with realistic heterogeneity simulation can be fabricated in departments with access a suitable 3D printer, which can be used for performing commissioning and quality assurance for stereotactic type radiotherapy to lesions in the presence of heterogeneity.


Assuntos
Radiocirurgia , Humanos , Imagens de Fantasmas , Radiometria , Tórax/diagnóstico por imagem , Impressão Tridimensional
10.
Phys Eng Sci Med ; 46(4): 1811-1817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672196

RESUMO

The 3D printing of lung-equivalent phantoms using conventional polylactic acid (PLA) filaments requires the use of low in-fill printing densities, which can produce substantial density heterogeneities from the air gaps within the resulting prints. Light-weight foaming PLA filaments produce microscopic air bubbles when heated to 3D printing temperatures. In this study, the expansion of foaming PLA filament was characterised for two 3D printers with different nozzle diameters, in order to optimise the printing flow rates required to achieve a low density print when printed at 100% in-fill printing density, without noticeable internal air gaps. Effective densities as low as 0.28 g cm- 3 were shown to be achievable with only microscopic air gaps. Light-weight foaming PLA filaments are a cost-effective method for achieving homogeneous lung-equivalency in 3D printed phantoms for use in radiotherapy imaging and dosimetry, featuring smaller air gaps than required to achieve low densities with conventional PLA filaments.


Assuntos
Poliésteres , Radiometria , Impressão Tridimensional , Pulmão/diagnóstico por imagem
11.
Phys Eng Sci Med ; 46(3): 1033-1041, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219798

RESUMO

Gamma evaluation is currently the most widely used dose comparison method for patient specific quality assurance (PSQA). However, existing methods for normalising the dose difference, using either the dose at the global maximum dose point or at each local point, can respectively lead to under- and over-sensitivity to dose differences in organ-at-risk structures. This may be of concern for plan evaluation from clinical perspectives. This study has explored and proposed a new method called structural gamma, which takes structural dose tolerances into consideration while performing gamma analysis for PSQA. As a demonstration of the structural gamma method, a total of 78 retrospective plans on four treatment sites were re-calculated on an in-house Monte Carlo system and compared with doses calculated from the treatment planning system. Structural gamma evaluations were performed using both QUANTEC dose tolerances and radiation oncologist specified dose tolerances, then compared with conventional global and local gamma evaluations. Results demonstrated that structural gamma evaluation is especially sensitive to errors in structures with restrictive dose constraints. The structural gamma map provides both geometric and dosimetric information on PSQA results, allowing straightforward clinical interpretation. The proposed structure-based gamma method accounts for dose tolerances for specific anatomical structures. This method can provide a clinically useful method to assess and communicate PSQA results, offering radiation oncologists a more intuitive way of examining agreement in surrounding critical normal structures.


Assuntos
Algoritmos , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
12.
Phys Eng Sci Med ; 45(2): 613-621, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35553016

RESUMO

An increase in radiotherapy-induced secondary malignancies has led to recent developments in analytical modelling of out-of-field dose. These models must be validated against measurements, but currently available datasets are outdated or limited in scope. This study aimed to address these shortcomings by producing a large dataset of out-of-field dose profiles measured with modern equipment. A novel method was developed with the intention of allowing physicists in all clinics to perform these measurements themselves using commonly available dosimetry equipment. A standard 3D scanning water tank was used to collect 36 extended profiles. Each profile was measured in two sections, with the inner section measured with the beam directly incident on the tank, and the outer section with the beam incident on a water-equivalent phantom abutted next to the tank. The two sections were then stitched using a novel feature-matching approach. The profiles were compared against linac commissioning data and manually inspected for discontinuities in the overlap region. The dataset is presented as a publicly accessible comma separated variable file containing off-axis ratios at a range of off-axis distances. This dataset may be applied to the development and validation of analytical models of out-of-field dose. Additionally, it may be used to inform dose estimates to radiosensitive implants and anatomy. Physicists are encouraged to perform these out-of-field measurements in their own clinics and share their results with the community.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Água
13.
J Med Radiat Sci ; 69(2): 218-226, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34877819

RESUMO

INTRODUCTION: Optical three-dimensional scanning devices can produce geometrically accurate, high-resolution models of patients suitable for clinical use. This article describes the use of a metrology-grade structured light scanner for the design and production of radiotherapy medical devices and synthetic water-equivalent computer tomography images. METHODS: Following commissioning of the device by scanning objects of known properties, 173 scans were performed on 26 volunteers, with observations of subjects and operators collected. RESULTS: The fit of devices produced using these scans was assessed, and a workflow for the design of complex devices using a treatment planning system was identified. CONCLUSIONS: Recommendations are provided on the use of the device within a radiation oncology department.


Assuntos
Radioterapia (Especialidade) , Humanos , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
14.
Phys Eng Sci Med ; 45(3): 679-685, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834171

RESUMO

Healthcare relies upon the accurate and safe delivery of patient care. This is only achievable when systems are developed to ensure high quality, robust outcomes, for instance quality management systems. The concept of quality management can take on a different meaning depending on the context in which it is found. To add complication, the amount of education required for quality management will vary depending on one's exposure to the implementation of quality systems. In part to address these issues, the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Queensland Branch held a quality management webinar for members and non-members across Australia and New Zealand. The purpose of the webinar was to educate and facilitate discussion regarding the application of quality management principles for the ACPSEM profession. In conjunction, a pre- and post-webinar survey was conducted to gain an insight into existing knowledge and attitudes within the professions governed by the ACPSEM and students undertaking related studies. This paper authored by the webinar speakers reintroduces the quality management principles that were discussed in webinar, exemplifies the importance of quality management skills within the ACPSEM professions and presents the results of the surveys, promoting the need for more educational resources on quality management tools.


Assuntos
Engenharia , Austrália , Humanos , Nova Zelândia , Universidades , Recursos Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-35813156

RESUMO

Intra-oral stents (including mouth-pieces and bite blocks) can be used to displace adjacent non-involved oral tissue and reduce radiation side effects from radiotherapy treatments for head-and-neck cancer. In this study, a modular and customisable 3D printed intra-oral stent was designed, fabricated and evaluated, to utilise the advantages of the 3D printing process without the interruption of clinical workflow associated with printing time. The stent design used a central mouth-opening and tongue-depressing main piece, with optional cheek displacement pieces in three different sizes, plus an anchor point for moulding silicone to fit individual patients' teeth. A magnetic resonance imaging (MRI) study of one healthy participant demonstrated the tissue displacement effects of the stent, while providing a best-case indication of its comfort.

16.
Med Phys ; 48(5): 2667-2672, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33619729

RESUMO

PURPOSE: Radiochromic film has been established as a detector that can be used without the need for perturbation correction factors for small field dosimetry in water. However, perturbation factors in low density media such as lung have yet to be published. This study calculated the factors required to account for the perturbation of radiochromic film when used for small field dosimetry in lung equivalent material. METHOD: Monte Carlo simulations were used to calculate dose to Gafchromic EBT3 film when placed inside a lung phantom. The beam simulated had a nominal energy of 6 MV and the field sizes simulated ranged from 10 × 10 mm2 to 30 × 30 mm2 . The lung density simulated was varied between 0.2 and 0.3 g/cm3 . Each simulation was repeated with the film replaced by lung material (the same as the surrounding medium), and the required correction factors for film dosimetry in lung ( D M e d , Q D D e t , Q ) were calculated by dividing the dose in lung by the dose in film. RESULTS: For field sizes 30 × 30 mm2 and larger, no correction factors were required. At a 20 × 20 mm2 field size, small corrections were required, but were within the approximate accuracy of film dosimetry (~2%). For a 10 × 10 mm2 field size, significant correction factors need to be applied (0.935 for lung density of 0.20 g/cm3 to 0.963 for lung density of 0.30 g/cm3 ). The values lower than one mean that the film is over-responding. At the "upstream" lung-water interface the correction factors were close to unity; while at the downstream interface the corrections required were marginally smaller to those at the center of lung. One centimeter or more away from the interfaces, the correction factor did not vary as a function distance from the interface (in the beam direction). Away from the central axis (perpendicular to the beam direction), the correction factors increased slightly (away from unity) as a function of off-axis distance, before abruptly changing direction at the penumbra, with the film actually under-responding by ~10% outside the field edges. CONCLUSION: Accurate dosimetry of very small fields (15 × 15 mm2 or smaller) using radiochromic film requires correction factors for the perturbation of the film on the surrounding lung material. This correction factor was as high as 6.5% for a 10 × 10 mm2 field size and a density of 0.2 g/cm3 . This will increase if either the density or the field size decrease further. This correction factor does not vary as a function of depth in lung once charged particle equilibrium is established.


Assuntos
Dosimetria Fotográfica , Radiometria , Pulmão , Método de Monte Carlo , Imagens de Fantasmas
17.
Phys Eng Sci Med ; 44(1): 331-335, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33591538

RESUMO

Monte Carlo simulations of lung equivalent materials often involve the density being artificially lowered rather than a true lung tissue (or equivalent plastic) and air composition being simulated. This study used atomic composition analysis to test the suitability of this method. Atomic composition analysis was also used to test the suitability of 3D printing PLA or ABS with air to simulate lung tissue. It was found that there was minimal atomic composition difference when using an artificially lowered density, with a 0.8 % difference in Nitrogen the largest observed. Therefore, excluding infill pattern effects, lowering the density of the lung tissue (or plastic) in simulations should be sufficiently accurate to simulate an inhaled lung, without the need to explicitly include the air component. The average electron density of 3D printed PLA and air, and ABS and air were just 0.3 % and 1.3 % different to inhaled lung, confirming their adequacy for MV photon dosimetry. However large average atomic number differences (5.6 % and 20.4 % respectively) mean that they are unlikely to be suitable for kV photon dosimetry.


Assuntos
Fótons , Radiometria , Pulmão , Método de Monte Carlo , Impressão Tridimensional
18.
Phys Eng Sci Med ; 44(1): 201-206, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559038

RESUMO

The aim of this study is to evaluate the behaviour of global and local gamma analyses with isodose levels. Global and local gamma evaluation were performed on patient-specific quality assurance (PSQA) data from 100 volumetric modulated arc therapy (VMAT) arcs and 100 helical tomotherapy (HT) plans, using an in-house gamma code. Gamma pass rates versus isodose levels were plotted and evaluated. Other than a slightly increased skew towards higher pass rates for the global gamma evaluation, minimal differences were observed between the results of evaluating all VMAT arcs separately and the results of evaluating over VMAT treatment plans by combining arcs from each plan. Generally, the VMAT results showed average pass rates that increase with decreasing isodose level, for both global and local gamma evaluations. The HT results differed systematically from the VMAT results, with the results of performing global and local gamma evaluations agreeing more closely at all isodose levels and with the highest gamma pass rates being achieved at intermediate dose levels, between the 40 and 70% isodose levels. These results demonstrate the complex of relationships between global and local gamma evaluation results that can arise when clinical PSQA data are analysed and exemplify how the local gamma evaluation does not necessarily produce disproportionately reduced gamma pass rates in low dose regions. Performing gamma evaluation with different isodose levels is suggested as a useful method to improve understanding of specific PSQA data and as well as the broader features of gamma evaluation results.


Assuntos
Radioterapia de Intensidade Modulada , Raios gama , Humanos
19.
Med Dosim ; 46(1): 13-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32660888

RESUMO

Gas-filled temporary tissue expanders (TTEs), implanted to assist in post mastectomy breast reconstructions, are expected to produce increased dosimetric uncertainty in breast radiotherapy treatments, due to their containing both a substantial metallic component and a comparatively large volume of gas. This study therefore builds on previous investigations of the dosimetric effects of gas-filled TTEs in static photon and electron beams, by examining the effects of these implants on dose distributions from common modulated rotational treatment techniques; volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT). Radiochromic film measurements were used to evaluate the accuracy of VMAT and HT dose calculations, for a humanoid phantom augmented with a sample Aeroform CO2-filled TTE (AirXpanders Inc, San Jose, USA) as well as purpose-designed and 3D printed "breast tissue." Results showed that the TomoTherapy Hi-Art VoLO convolution-superposition algorithm (Accuray Inc, Sunnyvale, USA) produced comparatively accurate calculations of treatment dose within this complex phantom, including immediately anterior and posterior to the TTE. The Varian Eclipse Acuros (AXB) algorithm generally showed better agreement with the film measurement than the Varian Eclipse AAA algorithm (Varian Medical Systems, Palo Alto, USA), although the film measurements showed regions of 5% to 10% disagreement with both AAA and AXB in the dosimetrically-challenging region on the anterior side of the implant. Although the Aeroform CO2-filled TTE has substantial and obvious effects on the downstream dose from a static photon beam, the results of this study showed how inverse-planning of modulated rotational radiotherapy treatments can produce modulated fluence distributions that compensate for the dramatic density heterogeneities in the implant. Despite some disagreements with the planned dose, all film measurements showed that the use of inverse-planned modulated rotational photon beams resulted in comparatively homogeneous coverage of the radiotherapy target, in the complex patient-like phantom with a gas-filled TTE. Due to the importance of matching each planned fluence distribution to the density distribution within each TTE, careful use of available 3D imaging techniques is advisable, when modulated rotational radiotherapy treatments are delivered to patients with gas-filled TTEs.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Algoritmos , Neoplasias da Mama/radioterapia , Feminino , Humanos , Mastectomia , Imagens de Fantasmas , Doses de Radiação , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Dispositivos para Expansão de Tecidos
20.
Phys Med ; 81: 94-101, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33445126

RESUMO

The planning and delivery of kilovoltage (kV) radiotherapy treatments involves the use of custom shielding designed and fabricated for each patient. This study investigated methods by which the required thickness of custom shielding could be predicted for non-standard shielding materials fabricated using 3D printing techniques. Seven kV radiation beams from a WOmed T-300 X-ray therapy unit were modelled using SpekPy software, and AAPM TG-61 data were used to account for backscatter and spectral effects, for incrementally increasing thicknesses of Pb, W-PLA composite and Cu-PLA composite materials. The same beams were used to perform physical transmission measurements, and the thickness of each material required to achieve 5% beam transmission was determined. While the measured transmission factors for Pb, W-PLA and Cu-PLA shielding generally exceeded the calculated transmission factors, these differences had minimal effect on the derived thicknesses of shielding required to achieve 5% transmission, where calculations agreed with measurements within 0.5 mm for Pb at all available energies (70-300 kVp), within 1.4 mm for W-PLA at all available energies, and within 2.1 mm for Cu-PLA at superficial treatment energies (70-100 kVp). The incremental transmission factor calculation method described and validated in this study could be used, in combination with the conservative addition of 1-2 mm of additional material, to estimate shielding requirements for novel materials in therapeutic kilovoltage beams. However, if calculated shielding thicknesses equate to 10 mm or more, then additional verification measurements should be performed and the clinical suitability of the novel shielding material should be re-evaluated.


Assuntos
Fótons , Humanos , Fenômenos Físicos , Doses de Radiação , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa