Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Naturwissenschaften ; 100(10): 943-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036664

RESUMO

The future of Madagascar's forests and their resident lemurs is precarious. Determining how species respond to forest fragmentation is essential for management efforts. We use stable isotope biogeochemistry to investigate how disturbance affects resource partitioning between two genera of cheirogaleid lemurs (Cheirogaleus and Microcebus) from three humid forest sites: continuous and fragmented forest at Tsinjoarivo, and selectively logged forest at Ranomafana. We test three hypotheses: (H1) cheirogaleids are unaffected by forest fragmentation, (H2) species respond individually to disturbance and may exploit novel resources in fragmented habitat, and (H3) species alter their behavior to rely on the same key resource in disturbed forest. We find significant isotopic differences among species and localities. Carbon data suggest that Microcebus feed lower in the canopy than Cheirogaleus at all three localities and that sympatric Cheirogaleus crossleyi and C. sibreei feed at different canopy heights in the fragmented forest. Microcbus have higher nitrogen isotope values than Cheirogaleus at all localities, indicating more faunivory. After accounting for baseline isotope values in plants, our results provide the most support for H3. We find similar isotopic variations among localities for both genera. Small differences in carbon among localities may reflect shifts in diet or habitat use. Elevated nitrogen values for cheirogaleid lemurs in fragments may reflect increased arthropod consumption or nutritional stress. These results suggest that cheirogaleids are affected by forest disturbance in Eastern Madagascar and stress the importance of accounting for baseline isotopic differences in plants in any work comparing localities.


Assuntos
Dieta , Ecossistema , Marcação por Isótopo , Lemur/fisiologia , Árvores , Animais , Isótopos de Carbono/análise , Lemur/metabolismo , Madagáscar , Isótopos de Nitrogênio/análise , Plantas/metabolismo
3.
Geobiology ; 16(2): 160-178, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29350453

RESUMO

The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well-preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13 C) analysis of bulk decapod cuticle yielded similar mean δ13 C values for both taxa (-25.1‰ and -26‰, respectively). Sedimentary biomarkers were composed of n-alkanes from C16 to C36 , with the short-chain n-alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13 C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13 C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian-early Maastrichtian and demonstrates for the first time that organic δ13 C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.


Assuntos
Organismos Aquáticos/metabolismo , Artrópodes/metabolismo , Fósseis , Sedimentos Geológicos/química , Processos Heterotróficos , Animais , Isótopos de Carbono/análise , Elementos Químicos , Mississippi , Compostos Orgânicos/metabolismo , Análise Espectral Raman , Tennessee
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa