Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 571(7765): E8, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31249423

RESUMO

In this Letter, a middle initial and additional affiliation have been added for author G. J. Nabuurs; two statements have been added to the Supplementary Acknowledgements; and a citation to the French National Institute has been added to the Methods; see accompanying Author Correction for further details.

2.
Nature ; 569(7756): 404-408, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092941

RESUMO

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.


Assuntos
Clima , Florestas , Mapeamento Geográfico , Micorrizas/fisiologia , Simbiose , Árvores/metabolismo , Árvores/microbiologia , Fixação de Nitrogênio , Chuva , Estações do Ano
3.
Nature ; 560(7716): E1, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29875404

RESUMO

In this Brief Communications Arising Reply, the affiliation for author P. H. Templer was incorrectly listed as 'Department of Ecology & Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA' instead of 'Department of Biology, Boston University, Boston, Massachusetts 02215, USA'. This has been corrected online.

4.
Nature ; 540(7631): 104-108, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905442

RESUMO

The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.


Assuntos
Atmosfera/química , Ciclo do Carbono , Carbono/análise , Geografia , Aquecimento Global , Solo/química , Bases de Dados Factuais , Ecossistema , Retroalimentação , Modelos Estatísticos , Reprodutibilidade dos Testes , Temperatura
5.
Nature ; 525(7568): 201-5, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331545

RESUMO

The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.


Assuntos
Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Ecologia/estatística & dados numéricos , Ecossistema , Agricultura Florestal/estatística & dados numéricos , Densidade Demográfica , Reprodutibilidade dos Testes
6.
Ecol Lett ; 22(6): 936-945, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884085

RESUMO

Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm-2  year-1 (standard deviation 0.18 KgCm-2  year-1 ). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high-latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios.


Assuntos
Carbono , Solo , Ecossistema , Nitrogênio , Nutrientes , Solo/química
9.
Science ; 365(6455)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31439761

RESUMO

Soil organisms represent the most biologically diverse community on land and govern the turnover of the largest organic matter pool in the terrestrial biosphere. The highly complex nature of these communities at local scales has traditionally obscured efforts to identify unifying patterns in global soil biodiversity and biogeochemistry. As a result, environmental covariates have generally been used as a proxy to represent the variation in soil community activity in global biogeochemical models. Yet over the past decade, broad-scale studies have begun to see past this local heterogeneity to identify unifying patterns in the biomass, diversity, and composition of certain soil groups across the globe. These unifying patterns provide new insights into the fundamental distribution and dynamics of organic matter on land.


Assuntos
Biomassa , Microbiota , Microbiologia do Solo , Solo/química , Animais , Biodiversidade
10.
Surv Geophys ; 40(4): 979-999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395994

RESUMO

Several upcoming satellite missions have core science requirements to produce data for accurate forest aboveground biomass mapping. Largely because of these mission datasets, the number of available biomass products is expected to greatly increase over the coming decade. Despite the recognized importance of biomass mapping for a wide range of science, policy and management applications, there remains no community accepted standard for satellite-based biomass map validation. The Committee on Earth Observing Satellites (CEOS) is developing a protocol to fill this need in advance of the next generation of biomass-relevant satellites, and this paper presents a review of biomass validation practices from a CEOS perspective. We outline the wide range of anticipated user requirements for product accuracy assessment and provide recommendations for the validation of biomass products. These recommendations include the collection of new, high-quality in situ data and the use of airborne lidar biomass maps as tools toward transparent multi-resolution validation. Adoption of community-vetted validation standards and practices will facilitate the uptake of the next generation of biomass products.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa