Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Primatol ; 79(3): 1-12, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28095593

RESUMO

Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. RESEARCH HIGHLIGHTS: Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably.


Assuntos
Espécies em Perigo de Extinção , Face , Pan troglodytes , Reconhecimento Automatizado de Padrão , Animais , Coleta de Dados
2.
Ecol Evol ; 12(5): e8902, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35571760

RESUMO

Localizing wildlife contributes in multiple ways to species conservation. Data on animal locations can reveal elements of social behavior, habitat use, population dynamics, and be useful in calculating population density. Acoustic localization systems (ALS) are a non-invasive method widely used in the marine sciences but not well established and rarely employed for terrestrial species.We deployed an acoustic array in a mountainous environment with heterogeneous vegetation, comprised of four custom-built GPS synchronized acoustic sensors at about 500 m intervals in Issa Valley, western Tanzania, covering an area of nearly 2 km2. Our goal was to assess the precision and error of the estimated locations by conducting playback tests, but also by comparing the estimated locations of wild chimpanzee calls with their true locations obtained in parallel during follows of individual chimpanzees. We assessed the factors influencing localization error, such as wind speed and temperature, which fluctuate during the day and are known to affect sound transmission.We localized 282 playback sounds and found that the mean localization error was 27 ± 21.8 m. Localization was less prone to error and more precise during early mornings (6:30 h) compared to other periods. We further localized 22 wild chimpanzee loud calls within 52 m of the location of a researcher closely following the calling individuals.We demonstrate that acoustic localization is a powerful tool for chimpanzee monitoring, with multiple behavioral and conservation applications. Its applicability in studying social dynamics and revealing density estimation among many others, especially but not exclusively for loud calling species, provides an efficient way of monitoring populations and informing conservation plans to mediate species loss.

3.
PeerJ ; 9: e12326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721995

RESUMO

BACKGROUND: Patterns of vocal communication have implications for species conservation: a change in calling behaviour can, for instance, reflect a disturbed habitat. More importantly, call rate is a parameter that allows conservation planners to convert call density into animal density, when detecting calls with a passive acoustic monitoring system (PAM). METHODS: We investigated chimpanzee (Pan troglodytes schweinfurthii) call rate during the late dry season in the Issa Valley, western Tanzania by conducting focal follows. We examined the socio-ecological factors that influence call production rate of savanna woodland chimpanzees. RESULTS: We found that sex, proportion of time spent in a vegetation type, proportion of time spent travelling, time of the day, party size and swollen parous female presence had a significant effect on the call rate. Call rate differed among the different demographic classes with subadult and adult males vocalising twice as often as the subadult and adult females and three times as often as the juveniles. APPLICATIONS: The use of PAM and recent statistical developments to estimate animal density is promising but relies on our knowing individual call rate, often not available for many species. With the improvement in automatic call detection, we anticipate that PAM will increasingly be broadly applied to primates but also across taxa, for conservation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa