Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(3): 1119-1132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735729

RESUMO

Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.


Assuntos
Pinus , Árvores , California , Secas , Florestas , Pinus ponderosa
2.
Glob Chang Biol ; 25(3): 911-926, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30408264

RESUMO

The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate-growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long-term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate-growth response. The negative radial growth response to warm and dry early- to mid-summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13 C was reduced in warm, dry summers and further diminished on south-facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13 C discrimination, and increased intrinsic water-use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate-growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.


Assuntos
Mudança Climática , Monitoramento Ambiental , Picea/fisiologia , Taiga , Alaska , Isótopos de Carbono/metabolismo , Sequestro de Carbono , Secas , Picea/crescimento & desenvolvimento , Picea/metabolismo , Energia Solar
3.
Ecology ; 97(1): 145-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008784

RESUMO

Increment cores from the boreal forest have long been used to reconstruct past climates. However, in recent years, numerous studies have revealed a deterioration of the correlation between temperature and tree growth that is commonly referred to as divergence. In the Brooks Range of northern Alaska, USA, studies of white spruce (Picea glauca) revealed that trees in the west generally showed positive growth trends, while trees in the central and eastern Brooks Range showed mixed and negative trends during late 20th century warming. The growing season climate of the eastern Brooks Range is thought to be drier than the west. On this basis, divergent tree growth in the eastern Brooks Range has been attributed to drought stress. To investigate the hypothesis that drought-induced stomatal closure can explain divergence in the Brooks Range, we synthesized all of the Brooks Range white spruce data available in the International Tree Ring Data Bank (ITRDB) and collected increment cores from our primary sites in each of four watersheds along a west-to-east gradient near the Arctic treeline. For cores from our sites, we measured ring widths and calculated carbon isotope discrimination (δ13C), intrinsic water-use efficiency (iWUE), and needle intercellular CO2 concentration (C(i)) from δ13C in tree-ring alpha-cellulose. We hypothesized that trees exhibiting divergence would show a corresponding decline in δ13C, a decline in C(i), and a strong increase in iWUE. Consistent with the ITRDB data, trees at our western and central sites generally showed an increase in the strength of the temperature-growth correlation during late 20th century warming, while trees at our eastern site showed strong divergence. Divergent tree growth was not, however, associated with declining δ13C. Meanwhile, estimates of C(i) showed a strong increase at all of our study sites, indicating that more substrate was available for photosynthesis in the early 21st than in the early 20th century. Our results, which are corroborated by measurements of xylem sap flux density, needle gas exchange, and measurements of growth and δ13C along moisture gradients within each watershed, suggest that drought-induced stomatal closure is probably not the cause of 20th century divergence in the Brooks Range.


Assuntos
Secas , Picea/crescimento & desenvolvimento , Picea/fisiologia , Estômatos de Plantas/fisiologia , Alaska , Isótopos de Carbono , Clima , Transpiração Vegetal , Fatores de Tempo
4.
Ecol Appl ; 26(7): 2001-2020, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755740

RESUMO

Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. We use tree-ring isotope chronologies (δ13 C and δ18 O) from live and dead trees from four locations in south-central Alaska, USA, to test whether white spruce trees killed by recent spruce beetle (Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites, we found greater correlations between the δ13 C and δ18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ18 O was measured, δ18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska.


Assuntos
Carbono/química , Besouros/fisiologia , Secas , Oxigênio/química , Picea/química , Picea/fisiologia , Alaska , Animais , Carbono/metabolismo , Isótopos de Carbono , Oxigênio/metabolismo , Isótopos de Oxigênio , Crescimento Demográfico , Fatores de Tempo
5.
Sci Total Environ ; 735: 139523, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502819

RESUMO

Long duration tree-ring records with annual precision allow for the reconstruction of past growing conditions. Investigations limited to the most common tree-ring proxy of ring width can be difficult to interpret, however, because radial growth is affected by multiple environmental processes. Furthermore, studies of living trees may miss important effects of drought on tree survival and forest changes. Stable carbon isotopes can help distinguish drought from other environmental factors that influence tree-ring width and forest stand condition. We quantified tree-ring radial expansion and stable carbon isotope ratios (δ13C) in riparian cottonwoods (Populus angustifolia and P. angustifolia x P.trichocarpa) along Snake Creek in Nevada, USA. We investigated how hydrological drought affected tree growth and death at annual to half-century scales in a partially dewatered reach (DW) compared to reference reaches immediately upstream and downstream. A gradual decline in tree-ring basal area increment (BAI) began at DW concurrent to streamflow diversion in 1961. BAI at DW diverged from one reference reach immediately but not from the other until nearly 50 years later. In contrast, tree-ring δ13C had a rapid and sustained increase following diversion at DW only, providing the stronger and clearer drought signal. BAI and δ13C were not significantly correlated prior to diversion; after diversion they both reflected drought and were correlated for DW trees only. Cluster analyses distinguished all trees in DW from those in reference reaches based on δ13C, but BAI patterns left trees intermixed across reaches. Branch and tree mortality were also highest and canopy vigor was lowest in DW. Results indicate that water scarcity strongly limited cottonwood photosynthesis following flow diversion, thus reducing carbon assimilation, basal growth and survival. The dieback was not sudden, but occurred over decades as carbon deficits mounted and depleted streamflow left trees increasingly vulnerable to local meteorological drought.


Assuntos
Populus , Carbono , Isótopos de Carbono/análise , Secas , Florestas , Nevada , Isótopos de Oxigênio/análise , Árvores
6.
Glob Chang Biol ; 19(6): 1780-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23504924

RESUMO

The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.


Assuntos
Carbono , Chuva , Estações do Ano , Regiões Árticas , Clima , Ecossistema , Monitoramento Ambiental
7.
PLoS One ; 7(9): e45537, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029080

RESUMO

We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ(18)O and δ(2)H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information.


Assuntos
Fósseis , Madeira , Âmbar/química , Canadá , Celulose/química , Celulose/ultraestrutura , Meio Ambiente , Isótopos , Temperatura , Madeira/anatomia & histologia , Madeira/química , Madeira/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa