RESUMO
Cytosine methylation of mammalian DNA is essential for the proper epigenetic regulation of gene expression and maintenance of genomic integrity. To define the mechanism through which demethylated cells die, and to establish a paradigm for identifying genes regulated by DNA methylation, we have generated mice with a conditional allele for the maintenance DNA methyltransferase gene Dnmt1. Cre-mediated deletion of Dnmt1 causes demethylation of cultured fibroblasts and a uniform p53-dependent cell death. Mutational inactivation of Trp53 partially rescues the demethylated fibroblasts for up to five population doublings in culture. Oligonucleotide microarray analysis showed that up to 10% of genes are aberrantly expressed in demethylated fibroblasts. Our results demonstrate that loss of Dnmt1 causes cell-type-specific changes in gene expression that impinge on several pathways, including expression of imprinted genes, cell-cycle control, growth factor/receptor signal transduction and mobilization of retroelements.
Assuntos
Apoptose , Metilação de DNA , Regulação da Expressão Gênica , Genoma , Impressão Genômica , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais , Alelos , Animais , Sítios de Ligação Microbiológicos/genética , Divisão Celular , Linhagem Celular Transformada , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Evolução Molecular , Fibroblastos , Deleção de Genes , Perfilação da Expressão Gênica , Genes de Partícula A Intracisternal/genética , Integrases/genética , Integrases/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , RNA Mensageiro/genética , Recombinação Genética/genética , Células-Tronco/enzimologia , Células-Tronco/metabolismoRESUMO
Xist RNA expression, methylation of CpG islands, and hypoacetylation of histone H4 are distinguishing features of inactive X chromatin. Here, we show that these silencing mechanisms act synergistically to maintain the inactive state. Xist RNA has been shown to be essential for initiation of X inactivation, but not required for maintenance. We have developed a system in which the reactivation frequency of individual X-linked genes can be assessed quantitatively. Using a conditional mutant Xist allele, we provide direct evidence for that loss of Xist RNA destabilizes the inactive state in somatic cells, leading to an increased reactivation frequency of an X-linked GFP transgene and of the endogenous hypoxanthine phosphoribosyl transferase (Hprt) gene in mouse embryonic fibroblasts. Demethylation of DNA, using 5-azadC or by introducing a mutation in Dnmt1, and inhibition of histone hypoacetylation using trichostatin A further increases reactivation in Xist mutant fibroblasts, indicating a synergistic interaction of X chromosome silencing mechanisms.
Assuntos
Metilação de DNA , Mecanismo Genético de Compensação de Dose , Histonas/metabolismo , RNA não Traduzido/genética , Fatores de Transcrição/genética , Acetilação , Animais , Replicação do DNA/fisiologia , Feminino , Feto/citologia , Fibroblastos/fisiologia , Deleção de Genes , Inativação Gênica/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde , Histona Desacetilases/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , RNA/fisiologia , RNA Longo não CodificanteRESUMO
The initial interaction between the ColE1 plasmid specific transcripts RNA I and RNA II, which function as antisense regulators of plasmid replication, comprises a transient complex between complementary loops found within the RNA secondary structures. Multidimensional heteronuclear magnetic resonance spectroscopy was used to characterize complexes formed between model RNA hairpins having seven nucleotide complementary loops. Seven base pairs are formed in the loop-loop helix, with continuous helical stacking of the loop residues on the 3' side of their helical stems. A sharp bend in the loop-loop helix, documented by gel electrophoresis, narrows the major groove and allows bridging of the phosphodiester backbones across the major groove in order to close the hairpin loops at their 5'-ends. The bend is further enhanced by the binding of Rom, a ColE1 encoded protein that regulates replication.
Assuntos
Plasmídeos de Bacteriocinas/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Composição de Bases , Sequência de Bases , Gráficos por Computador , Eletroforese em Gel de Poliacrilamida , Sequências Hélice-Alça-Hélice , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , RNA/metabolismo , RNA Bacteriano/metabolismoAssuntos
Mecanismo Genético de Compensação de Dose , Deleção de Genes , Histonas/genética , RNA não Traduzido , Fatores de Transcrição/genética , Animais , Cromatina/genética , Feminino , Genótipo , Histonas/análise , Hibridização in Situ Fluorescente , Metáfase , Camundongos , Camundongos Knockout , Modelos Genéticos , RNA Longo não Codificante , Fatores de Transcrição/fisiologiaRESUMO
DNA methyltransferase I (Dnmt1), the maintenance enzyme for DNA cytosine methylation, is expressed at high levels in the CNS during embryogenesis and after birth. Because embryos deficient for Dnmt1 die at gastrulation, the role of Dnmt1 in the development and function of the nervous system could not be studied by using this mutation. We therefore used the cre/loxP system to produce conditional mutants that lack Dnmt1 in neuroblasts of embryonic day 12 embryos or in postmitotic neurons of the postnatal animal. Conditional deletion of the Dnmt1 gene resulted in rapid depletion of Dnmt1 proteins, indicating that the enzyme in postmitotic neurons turns over quickly. Dnmt1 deficiency in postmitotic neurons neither affected levels of global DNA methylation nor influenced cell survival during postnatal life. In contrast, Dnmt1 deficiency in mitotic CNS precursor cells resulted in DNA hypomethylation in daughter cells. Whereas mutant embryos carrying 95% hypomethylated cells in the brain died immediately after birth because of respiratory distress, mosaic animals with 30% hypomethylated CNS cells were viable into adulthood. However, these mutant cells were eliminated quickly from the brain within 3 weeks of postnatal life. Thus, hypomethylated CNS neurons were impaired functionally and were selected against at postnatal stages.
Assuntos
Sistema Nervoso Central/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Morte Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Cruzamentos Genéticos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , Eletrofisiologia , Marcação de Genes , Camundongos , Camundongos Transgênicos , Mosaicismo/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Insuficiência Respiratória/genética , Células-Tronco/citologia , Células-Tronco/metabolismoRESUMO
5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles (e.g., chlorophylls and hemes). In the chloroplasts of plants and in several eubacterial species ALA is formed in a two-step process known as the C5 pathway. In the first step, glutamyl-tRNA reductase (GluTR), converts glutamate of glutamyl-tRNA to glutamate 1-semialdehyde (GSA) which is rearranged to ALA by glutamate 1-semialdehyde-2,1-aminomutase (GSA-A) in the second step. Since ALA formation is a limiting step in chlorophyll biosynthesis, GluTR, which is encoded by the HEMA gene in Arabidopsis thaliana plays a vital role in that biosynthesis. Here we report the occurrence of a second functional HEMA gene (HEMA2) in A. thaliana. This gene was isolated by screening a genomic library with a probe from HEMA1. The nucleotide sequence of the cDNA and the corresponding genomic DNA indicates that the Arabidopsis HEMA2 gene contains two short introns (285 bp and 159 bp). The deduced amino acid sequence predicts a HEMA2 protein of 530 amino acids with 79% identity to the HEMA1-encoded GluTR. The 5'-flanking sequence of the HEMA2 gene includes several motifs (e.g., GT-1 boxes, GATA motifs) similar to light-responsive regulatory elements found in light-inducible genes. Unlike the HEMA1 transcript, which is present in all parts of the plant, HEMA2 is expressed in low levels in roots and flowers. The presence of a second functional HEMA gene in Arabidopsis raises the possibility that two C5 pathways exist in chloroplasts.