Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proteins ; 92(3): 418-426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929701

RESUMO

Middle East respiratory syndrome coronavirus (MERS CoV) and severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) are RNA viruses from the Betacoronavirus family that cause serious respiratory illness in humans. One of the conserved non-structural proteins encoded for by the coronavirus family is non-structural protein 9 (nsp9). Nsp9 plays an important role in the RNA capping process of the viral genome, where it is covalently linked to viral RNA (known as RNAylation) by the conserved viral polymerase, nsp12. Nsp9 also directly binds to RNA; we have recently revealed a distinct RNA recognition interface in the SARS CoV-2 nsp9 by using a combination of nuclear magnetic resonance spectroscopy and biolayer interferometry. In this study, we have utilized a similar methodology to determine a structural model of RNA binding of the related MERS CoV. Based on these data, we uncover important similarities and differences to SARS CoV-2 nsp9 and other coronavirus nsp9 proteins. Our findings that replacing key RNA binding residues in MERS CoV nsp9 affects RNAylation efficiency indicate that recognition of RNA may play a role in the capping process of the virus.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA/metabolismo
2.
Proteins ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958516

RESUMO

The ongoing global pandemic of the coronavirus 2019 (COVID-19) disease is caused by the virus SARS-CoV-2, with very few highly effective antiviral treatments currently available. The machinery responsible for the replication and transcription of viral RNA during infection is made up of several important proteins. Two of these are nsp12, the catalytic subunit of the viral polymerase, and nsp9, a cofactor of nsp12 involved in the capping and priming of viral RNA. While several recent studies have determined the structural details of the interaction of nsp9 with nsp12 in the context of RNA capping, very few biochemical or biophysical details are currently available. In this study, we have used a combination of surface plasmon resonance (SPR) experiments, size exclusion chromatography (SEC) experiments, and biochemical assays to identify specific nsp9 residues that are critical for nsp12 binding as well as RNAylation, both of which are essential for the RNA capping process. Our data indicate that nsp9 dimerization is unlikely to play a significant functional role in the virus. We confirm that a set of recently discovered antiviral peptides inhibit nsp9-nsp12 interaction by specifically binding to nsp9; however, we find that these peptides do not impact RNAylation. In summary, our results have important implications for future drug discovery efforts to combat SARS-CoV-2 and any newly emerging coronaviruses.

3.
Proteins ; 90(1): 176-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369011

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel, highly infectious RNA virus that belongs to the coronavirus family. Replication of the viral genome is a fundamental step in the virus life cycle and SARS-CoV-2 non-structural protein 9 (Nsp9) is shown to be essential for virus replication through its ability to bind RNA in the closely related SARS-CoV-1 strain. Two recent studies revealing the three-dimensional structure of Nsp9 from SARS-CoV-2 have demonstrated a high degree of similarity between Nsp9 proteins within the coronavirus family. However, the binding affinity to RNA is very low which, until now, has prevented the determination of the structural details of this interaction. In this study, we have utilized nuclear magnetic resonance spectroscopy (NMR) in combination with surface biolayer interferometry (BLI) to reveal a distinct binding interface for both ssDNA and RNA that is different to the one proposed in the recently solved SARS-CoV-2 replication and transcription complex (RTC) structure. Based on these data, we have proposed a structural model of a Nsp9-RNA complex, shedding light on the molecular details of these important interactions.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Interferometria , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA , Soluções
4.
Semin Cell Dev Biol ; 86: 121-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577982

RESUMO

Our genomic DNA is found predominantly in a double-stranded helical conformation. However, there are a number of cellular transactions and DNA damage events that result in the exposure of single stranded regions of DNA. DNA transactions require these regions of single stranded DNA, but they are only transient in nature as they are particularly susceptible to further damage through chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. To protect these exposed regions of single stranded DNA, all living organisms have members of the Single Stranded DNA Binding (SSB) protein family, which are characterised by a conserved oligonucleotide/oligosaccharide-binding (OB) domain. In humans, three such proteins members have been identified; namely the Replication Protein A (RPA) complex, hSSB1 and hSSB2. While RPA is extremely well characterised, the roles of hSSB1 and hSSB2 have only emerged recently. In this review, we discuss the critical roles that hSSB1 plays in the maintenance of genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/genética , Humanos
5.
Proteins ; 88(2): 319-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31443132

RESUMO

Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.


Assuntos
Dano ao DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Raios Ultravioleta , Sítios de Ligação/genética , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Interferometria/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos
6.
Nucleic Acids Res ; 45(14): 8609-8620, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28609781

RESUMO

The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.


Assuntos
Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/química , Multimerização Proteica , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dano ao DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática
7.
Nucleic Acids Res ; 44(16): 7963-73, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27387285

RESUMO

Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Aminoácidos Aromáticos/metabolismo , Análise Mutacional de DNA , Células HeLa , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência , Soluções
8.
J Biol Chem ; 291(18): 9411-24, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26893375

RESUMO

Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.


Assuntos
Proteínas de Transporte/química , Dinaminas/química , Neuropeptídeos/química , Fosfoproteínas/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Ratos , Domínios de Homologia de src
9.
Extremophiles ; 21(2): 369-379, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28074284

RESUMO

Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , RNA Arqueal/química , Proteínas de Ligação a RNA/química , Sulfolobus solfataricus/química , Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sulfolobus solfataricus/metabolismo
10.
Nucleic Acids Res ; 43(18): 8817-29, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26261212

RESUMO

The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Proteínas Mitocondriais/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular , Cromatina/enzimologia , Cromatina/metabolismo , Adutos de DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Guanina/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriais/fisiologia , Estresse Oxidativo
11.
Biochem J ; 465(2): 337-46, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25367669

RESUMO

Canonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a 'simple' domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms. However, there are significant differences in the molecular mechanism of ssDNA binding. We have determined the structure of the SsoSSB OB domain bound to ssDNA by NMR spectroscopy. We reveal that ssDNA recognition is modulated by base-stacking of three key aromatic residues, in contrast with the OB domains of human RPA and the recently discovered human homologue of SsoSSB, hSSB1. We also demonstrate that SsoSSB binds ssDNA with a footprint of five bases and with a defined binding polarity. These data elucidate the structural basis of DNA binding and shed light on the molecular mechanism by which these 'simple' SSBs interact with ssDNA.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Proteínas de Ligação a DNA/química , Sulfolobus solfataricus/química , Proteínas Arqueais/genética , DNA Arqueal/genética , Proteínas de Ligação a DNA/genética , Humanos , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Sulfolobus solfataricus/genética
12.
J Biol Chem ; 288(49): 35180-91, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24097990

RESUMO

Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Receptores do Ácido Retinoico/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Dedos de Zinco
13.
Nature ; 453(7195): 677-81, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18449195

RESUMO

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/efeitos da radiação , Células HeLa , Humanos , Proteínas Mitocondriais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo
14.
Nucleic Acid Ther ; 34(3): 143-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648015

RESUMO

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos Fosforotioatos , Humanos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , Linhagem Celular Tumoral , Pareamento de Bases , Relação Estrutura-Atividade , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Dicroísmo Circular
15.
PLoS One ; 19(9): e0310565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283902

RESUMO

RNA-binding proteins (RBPs) are a major class of proteins that interact with RNAs to change their fate or function. RBPs and the ribonucleoprotein complexes they constitute are involved in many essential cellular processes. In many cases, the molecular details of RBP:RNA interactions differ between viruses, prokaryotes and eukaryotes, making prokaryotic and viral RBPs good potential drug targets. However, targeting RBPs with small molecules has so far been met with limited success as RNA-binding sites tend to be extended, shallow and dynamic with a mixture of charged, polar and hydrophobic interactions. Here, we show that peptide nucleic acids (PNAs) with nucleic acid-like binding properties and a highly stable peptide-like backbone can be used to target some RBPs. We have designed PNAs to mimic the short RNA stem-loop sequence required for the initiation of prokaryotic signal recognition particle (SRP) assembly, a target for antibiotics development. Using a range of biophysical and biochemical assays, the designed PNAs were demonstrated to fold into a hairpin structure, bind the targeted protein and compete with the native RNA hairpin to inhibit SRP formation. To show the applicability of PNAs against other RBPs, a PNA was also shown to bind Nsp9 from SARS-CoV-2, a protein that exhibits non-sequence-specific RNA binding but preferentially binds hairpin structures. Taken together, our results support that PNAs can be a promising class of compounds for targeting RNA-binding activities in RBPs.


Assuntos
Ácidos Nucleicos Peptídicos , Ligação Proteica , Proteínas de Ligação a RNA , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Conformação de Ácido Nucleico , SARS-CoV-2/metabolismo , RNA/metabolismo , RNA/química , Sítios de Ligação , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/química
16.
BMC Mol Biol ; 14: 9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548139

RESUMO

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Ciclo Celular , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Humanos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo
17.
Anal Biochem ; 440(2): 178-85, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727560

RESUMO

One method commonly used to characterize protein-DNA interactions is surface plasmon resonance (SPR). In a typical SPR experiment, chip-bound DNA is exposed to increasing concentrations of protein; the resulting binding data are used to calculate a dissociation constant for the interaction. However, in cases in which knowledge of the specificity of the interaction is required, a large set of DNA variants has to be tested; this is time consuming and costly, in part because of the requirement for multiple SPR chips. We have developed a new protocol that uses steady-state binding levels in SPR competition experiments to determine protein-binding dissociation constants for a set of DNA variants. This approach is rapid and straightforward and requires the use of only a single SPR chip. Additionally, in contrast to other methods, our approach does not require prior knowledge of parameters such as on or off rates, using an estimate of the wild-type interaction as the sole input. Utilizing relative steady-state responses, our protocol also allows for the rapid, reliable, and simultaneous determination of protein-binding dissociation constants of a large series of DNA mutants in a single experiment in a semiquantitative fashion. We compare our approach to existing methods, highlighting specific advantages as well as limitations.


Assuntos
Ligação Competitiva , DNA/metabolismo , Proteínas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Fatores de Tempo
18.
Nucleic Acids Res ; 39(9): 3643-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21227926

RESUMO

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Sítios de Ligação , Proteínas de Ciclo Celular/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Humanos , Proteína Homóloga a MRE11 , Proteínas Mitocondriais , Mutação , Proteínas Nucleares/genética
19.
Nucleic Acids Res ; 39(5): 1692-702, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21051358

RESUMO

hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/análise , Linhagem Celular , Enzimas Reparadoras do DNA/análise , Proteínas de Ligação a DNA/análise , Humanos , Proteína Homóloga a MRE11 , Proteínas Mitocondriais , Proteínas Nucleares/análise , Radiação Ionizante
20.
Protein Sci ; 32(10): e4782, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37705456

RESUMO

The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead-associated domain of Nbs1 interacts with INTS3 via phosphorylation-dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Fosforilação , Proteína Homóloga a MRE11/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa