Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410862, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146247

RESUMO

Surface grafting of polymer brushes drastically modifies surface properties, including wettability, compatibility, responsiveness, etc. A broad variety of functionalities can be introduced to the surface via different types of polymers. Bringing together properties of two or more types of polymer brushes to one surface opens up even more possibilities in brush-modified materials. However, while it is generally feasible to introduce several chemical compositions along the brushes via copolymerization, it is challenging to vary the types of polymer brushes along a surface. Although previous studies have demonstrated binary brushes via orthogonal polymerization techniques or partial deactivation/regrafting, they commonly limit the number of polymer types to two. Here, we propose a strategy to introduce dynamic covalent diketoenamine linkages at the root of polymer brushes. The grafting density could be precisely tuned during surface functionalization. The surface-anchored polymer brushes were cleaved by the addition of small molecule amines. New polymer brushes can be regrafted from the surface following refunctionalization of exposed sites. The maneuverability allows tuning of the types and densities of the polymer brushes, pointing the way to the preparation of a new generation of well-defined brush-modified materials with mixed grafts, with potential applications in the design of smart materials and surfaces.

2.
Angew Chem Int Ed Engl ; 63(25): e202402511, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634323

RESUMO

α-Olefins are valued and abundant building blocks from fossil resources. They are widely used to provide small-molecule or polymeric products. Despite numerous advantages of radical polymerization, it has been well-documented as textbook knowledge that α-olefins and their functionalized derivatives cannot be radically homopolymerized because of the degradative chain transfer side reactions. Herein, we report our studies on the homopolymerization of thiocyanate functionalized α-olefins enabled by 1,4-cyano group migration under radical conditions. By this approach, a library of ABC sequence-controlled polymers with high molecular weights can be prepared. We can also extend this strategy to the homopolymerization of α-substituted styrenic and acylate monomers which are known to be challenging to achieve. Overall, the demonstrated functional group migration radical polymerization could provide new possibilities to synthesize polymers with unprecedented main chain sequences and structures. These polymers are promising candidates for novel polymeric materials.

3.
Beilstein J Org Chem ; 19: 1580-1603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915554

RESUMO

Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa