Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 98(1): 313-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190496

RESUMO

Clostridium includes a number of species, such as thermophilic Clostridium thermocellum and mesophilic Clostridium cellulolyticum, producing biofuels and chemicals from lignocellulose, while genetic engineering is necessary to improve wild-type strains to fulfill the requirement of industrialization. ClosTron system is widely used in the gene targeting of Clostridium because of its high efficiency and operability. However, the targetron plasmid present in cell hinders the successive gene disruption. To solve this problem, a pyrF-based screening system was developed and implemented in C. cellulolyticum strain H10 in this study for efficient targetron plasmid curing. The screening system was composed of a pyrF-deleted cell chassis (H10ΔpyrF) constructed via homologous recombination and a PyrF expression cassette located in a targetron plasmid containing an erythromycin resistance gene. With the screening system, the gene targeting could be achieved following a two-step procedure, including the first step of gene disruption through targetron transformation and erythromycin selection and the second step of plasmid curing by screening with 5-fluoroorotic acid. To test the developed screening system, successive inactivation of the major cellulosomal exocellulase Cel48F and the scaffoldin protein CipC was achieved in C. cellulolyticum, and the efficient plasmid curing was confirmed. With the assistance of the pyrF-based screening system, the targetron plasmid-cured colonies can be rapidly selected by one-plate screening instead of traditional days' unguaranteed screening, and the successive gene disruption becomes accomplishable with ClosTron system with improved stability and efficiency, which may promote the metabolic engineering of Clostridium species aiming at enhanced production of biofuels and chemicals.


Assuntos
Clostridium cellulolyticum/genética , Técnicas de Inativação de Genes , Orotidina-5'-Fosfato Descarboxilase/genética , Seleção Genética , Ácido Orótico/análogos & derivados , Ácido Orótico/toxicidade , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Plasmídeos
2.
World J Gastroenterol ; 30(16): 2281-2284, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690016

RESUMO

The following are our views regarding the "letter to the editor" (Helicobacter is preserved in yeast vacuoles! Does Koch's postulates confirm it?) by Alipour and Gaeini, and the response "letter to the editor" (Candida accommodates non-culturable Helicobacter pylori in its vacuole-Koch's postulates aren't applicable) by Siavoshi and Saniee. Alipour and Gaeini rejected the methods, results, discussion, and conclusions summarized in a review article by Siavoshi and Saniee. The present article reviews and discusses evidence on the evolutionary adaptation of Helicobacter pylori (H. pylori) to thrive in Candida cell vacuoles and concludes that Candida could act as a Trojan horse, transporting potentially infectious H. pylori into the stomach of humans.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Helicobacter pylori/patogenicidade , Humanos , Infecções por Helicobacter/microbiologia , Candida/fisiologia , Candida/crescimento & desenvolvimento , Candida/patogenicidade , Vacúolos/microbiologia , Vacúolos/metabolismo , Estômago/microbiologia , Mucosa Gástrica/microbiologia
3.
Biomed Environ Sci ; 22(3): 229-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19725466

RESUMO

OBJECTIVE: To understand the molecular basis for a potential reaction mechanism and develop novel antibiotics with homology modeling for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS). METHODS: The genetic engineering technology and the composer module of SYBYL7.0 program were used, while the HMGS three-dimensional structure was analyzed by homology modeling. RESULTS: The mvaS gene was cloned from Streptococcus pneumoniae and overexpressed in Escherichia coli from a pET28 vector. The expressed enzyme (about 46 kDa) was purified by affinity chromatography with a specific activity of 3.24 micromol/min/mg. Optimal conditions were pH 9.75 and 10 mmol/L MgCl2 at 37 degrees C. The V(max) and K(m) were 4.69 micromol/min/mg and 213 micromol/L respectively. The 3D model of S. pneumoniae HMGS was established based on structure template of HMGS of Enterococcus faecalis. CONCLUSION: The structure of HMGS will facilitate the structure-based design of alternative drugs to cholesterol-lowering therapies or to novel antibiotics to the Gram-positive cocci, whereas the recombinant HMGS will prove useful for drug development against a different enzyme in the mevalonate pathway.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Hidroximetilglutaril-CoA Sintase/química , Hidroximetilglutaril-CoA Sintase/metabolismo , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Hidroximetilglutaril-CoA Sintase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Streptococcus pneumoniae/genética
4.
Chem Commun (Camb) ; 54(61): 8482-8485, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30003205

RESUMO

Crystal structure determination and mutagenesis analysis of a cis-epoxysuccinate hydrolase which produces enantiomerically pure d(-)-tartaric acids revealed a zinc ion and essential residues in the stereoselective mechanism for the catalytic reaction of the small mirror symmetric substrate.

5.
Enzyme Microb Technol ; 93-94: 182-190, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27702480

RESUMO

Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/antagonistas & inibidores , Estramenópilas/genética , Estramenópilas/metabolismo , Temperatura Baixa , Suplementos Nutricionais , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/metabolismo , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Fermentação , Íons , Isoniazida/farmacologia , Mutagênese , Estramenópilas/efeitos dos fármacos , Estresse Fisiológico , Triclosan/farmacologia
6.
Biotechnol J ; 10(6): 855-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25735546

RESUMO

Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions.


Assuntos
Biomassa , Marcação de Genes/métodos , Íntrons/genética , Engenharia Metabólica/métodos , Bactérias/genética , Biotecnologia
7.
Biotechnol Biofuels ; 8: 36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763107

RESUMO

BACKGROUND: Clostridium cellulolyticum and other cellulolytic Clostridium strains are natural producers of lignocellulosic biofuels and chemicals via the consolidated bioprocessing (CBP) route, and systems metabolic engineering is indispensable to meet the cost-efficient demands of industry. Several genetic tools have been developed for Clostridium strains, and an efficient and stringent inducible genetic operation system is still required for the precise regulation of the target gene function. RESULTS: Here, we provide a stringent arabinose-inducible genetic operation (ARAi) system for C. cellulolyticum, including an effective gene expression platform with an oxygen-independent fluorescent reporter, a sensitive MazF-based counterselection genetic marker, and a precise gene knock-out method based on an inducible ClosTron system. A novel arabinose-inducible promoter derived from Clostridium acetobutylicum is employed in the ARAi system to control the expression of the target gene, and the gene expression can be up-regulated over 800-fold with highly induced stringency. The inducible ClosTron method of the ARAi system decreases the off-target frequency from 100% to 0, which shows the precise gene targeting in C. cellulolyticum. The inducible effect of the ARAi system is specific to a universal carbon source L-arabinose, implying that the system could be used widely for clostridial strains with various natural substrates. CONCLUSIONS: The inducible genetic operation system ARAi developed in this study, containing both controllable gene expression and disruption tools, has the highest inducing activity and stringency in Clostridium by far. Thus, the ARAi system will greatly support the efficient metabolic engineering of C. cellulolyticum and other mesophilic Clostridium strains for lignocellulose bioconversion.

8.
Biotechnol Biofuels ; 7: 80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955112

RESUMO

BACKGROUND: Clostridium thermocellum is a thermophilic anaerobic bacterium that degrades cellulose by using a highly effective cellulosome, a macromolecular complex consisting of multiple cellulose degrading enzymes organized and attached to the cell surface by non-catalytic scaffoldins. However, due largely to lack of efficient methods for genetic manipulation of C. thermocellum, it is still unclear how the different scaffoldins and their functional modules contribute to cellulose hydrolysis. RESULTS: We constructed C. thermocellum mutants with the primary scaffoldin CipA (cellulosome-integrating protein A) truncated at different positions or lacking four different secondary scaffoldins by using a newly developed thermotargetron system, and we analyzed cellulose hydrolysis, cellulosome formation, and cellulose binding of the mutants. A CipA truncation that deletes six type I cohesin modules, which bind cellulolytic enzymes, decreased cellulose hydrolysis rates by 46%, and slightly longer truncations that also delete the carbohydrate binding module decreased rates by 89 to 92%, indicating strong cellulosome-substrate synergy. By contrast, a small CipA truncation that deletes only the C-terminal type II dockerin (XDocII) module detached cellulosomes from the cells, but decreased cellulose hydrolysis rates by only 9%, suggesting a relatively small contribution of cellulosome-cell synergy. Disruptants lacking any of four different secondary scaffoldins (OlpB, 7CohII, Orf2p, or SdbA) showed moderately decreased cellulose hydrolysis rates, suggesting additive contributions. Surprisingly, the CipA-ΔXDocII mutant, which lacks cell-associated polycellulosomes, adheres to cellulose almost as strongly as wild-type cells, revealing an alternate, previously unknown cellulose-binding mechanism. CONCLUSIONS: Our results emphasize the important role of cellulosome-substrate synergy in cellulose degradation, demonstrate a contribution of secondary scaffoldins, and suggest a previously unknown, non-cellulosomal system for binding insoluble cellulose. Our findings provide new insights into cellulosome function and impact genetic engineering of microorganisms to enhance bioconversions of cellulose substrates.

9.
PLoS One ; 8(7): e69032, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874856

RESUMO

BACKGROUND: Targetrons are gene targeting vectors derived from mobile group II introns. They consist of an autocatalytic intron RNA (a "ribozyme") and an intron-encoded reverse transcriptase, which use their combined activities to achieve highly efficient site-specific DNA integration with readily programmable DNA target specificity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used a mobile group II intron from the thermophilic cyanobacterium Thermosynechococcus elongatus to construct a thermotargetron for gene targeting in thermophiles. After determining its DNA targeting rules by intron mobility assays in Escherichia coli at elevated temperatures, we used this thermotargetron in Clostridium thermocellum, a thermophile employed in biofuels production, to disrupt six different chromosomal genes (cipA, hfat, hyd, ldh, pta, and pyrF). High integration efficiencies (67-100% without selection) were achieved, enabling detection of disruptants by colony PCR screening of a small number of transformants. Because the thermotargetron functions at high temperatures that promote DNA melting, it can recognize DNA target sequences almost entirely by base pairing of the intron RNA with less contribution from the intron-encoded protein than for mesophilic targetrons. This feature increases the number of potential targetron-insertion sites, while only moderately decreasing DNA target specificity. Phenotypic analysis showed that thermotargetron disruption of the genes encoding lactate dehydrogenase (ldh; Clo1313_1160) and phosphotransacetylase (pta; Clo1313_1185) increased ethanol production in C. thermocellum by decreasing carbon flux toward lactate and acetate. CONCLUSIONS/SIGNIFICANCE: Thermotargetron provides a new, rapid method for gene targeting and genetic engineering of C. thermocellum, an industrially important microbe, and should be readily adaptable for gene targeting in other thermophiles.


Assuntos
Clostridium thermocellum/genética , Cianobactérias/genética , Marcação de Genes , Íntrons , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos , Clostridium thermocellum/metabolismo , Escherichia coli/genética , Ordem dos Genes , Vetores Genéticos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Óperon Lac , Metaboloma , Metabolômica/métodos , Mutagênese Insercional , Conformação de Ácido Nucleico , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Plasmídeos/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Catalítico , Temperatura
10.
Appl Biochem Biotechnol ; 168(3): 708-17, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22843080

RESUMO

Cis-epoxysuccinic acid hydrolase (CESH) is an enzyme that catalyzes cis-epoxysuccinic acid to produce enantiomeric L(+)-tartaric acid. The production of tartaric acid by using CESH would be valuable in the chemical industry because of its high yield and selectivity, but the low stability of CESH hampers its application. To improve the stability of CESH, we fused five different carbohydrate-binding modules (CBMs) to CESH and immobilized the chimeric enzymes on cellulose. The effects of the fusion and immobilization on the activity, kinetics, and stability of CESH were compared. Activity measurements demonstrated that the fusion with CBMs and the immobilization on cellulose increased the pH and temperature adaptability of CESH. The chimeric enzymes showed significantly different enzyme kinetics parameters, among which the immobilized CBM30-CESH exhibited twofold catalytic efficiency compared with the native CESH. The half-life measurements indicated that the stability of the enzyme in its free form was slightly increased by the fusion with CBMs, whereas the immobilization on cellulose significantly increased the stability of the enzyme. The immobilized CBM30-CESH showed the longest half-life, which is more than five times the free native CESH half-life at 30 °C. Therefore, most CBMs can improve enzymatic properties, and CBM30 is the best fusion partner for CESH to improve both its enzymatic efficiency and its stability.


Assuntos
Proteínas de Bactérias/química , Celulose/metabolismo , Clostridium/genética , Hidrolases/química , Engenharia de Proteínas , Receptores de Superfície Celular/genética , Rhodococcus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhodococcus/genética , Especificidade por Substrato , Ácido Succínico/química , Ácido Succínico/metabolismo
11.
Protein J ; 31(5): 432-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22592448

RESUMO

The cis-epoxysuccinate hydrolases (CESHs), members of epoxide hydrolase, catalyze cis-epoxysuccinic acid hydrolysis to form D: (-)-tartaric acid or L: (+)-tartaric acid which are important chemicals with broad scientific and industrial applications. Two types of CESHs (CESH[D: ] and CESH[L: ], producing D: (-)- and L: (+)-tartaric acids, respectively) have been reported with low yield and complicated purification procedure in previous studies. In this paper, the two CESHs were overexpressed in Escherichia coli using codon-optimized genes. High protein yields by one-step purifications were obtained for both recombinant enzymes. The optimal pH and temperature were measured for both recombinant CESHs, and the properties of recombinant enzymes were similar to native enzymes. Kinetics parameters measured by Lineweaver-Burk plot indicates both enzymes exhibited similar affinity to cis-epoxysuccinic acid, but CESH[L: ] showed much higher catalytic efficiency than CESH[D: ], suggesting that the two CESHs have different catalytic mechanisms. The structures of both CESHs constructed by homology modeling indicated that CESH[L: ] and CESH[D: ] have different structural folds and potential active site residues. CESH[L: ] adopted a typical α/ß-hydrolase fold with a cap domain and a core domain, whereas CESH[D: ] possessed a unique TIM barrel fold composed of 8 α-helices and 8 ß-strands, and 2 extra short α-helices exist on the top and bottom of the barrel, respectively. A divalent metal ion, preferred to be zinc, was found in CESH[D: ], and the ion was proved to be crucial to the enzymatic activity. These results provide structural insight into the different catalytic mechanisms of the two CESHs.


Assuntos
Bordetella/enzimologia , Clonagem Molecular , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Rhodococcus/enzimologia , Ácido Succínico/metabolismo , Bordetella/química , Bordetella/genética , Clonagem Molecular/métodos , Epóxido Hidrolases/química , Epóxido Hidrolases/isolamento & purificação , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Escherichia coli/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhodococcus/química , Rhodococcus/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Ácido Succínico/química , Tartaratos/metabolismo
12.
J Microbiol Methods ; 89(3): 201-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22450138

RESUMO

Genetic engineering of Clostridium cellulolyticum has been developed slowly compared with that of other clostridial species, and one of the major reasons might be the restriction and modification (RM) system which degrades foreign DNA. Here, a putative MspI endonuclease gene, ccel2866, was inactivated by a ClosTron-based gene disruption method. The resulting C. cellulolyticum mutant H10ΔmspI lost the MspI endonuclease activity and can accept unmethylated DNA efficiently. Following that, an oxygen-independent green fluorescence protein gene was introduced into H10ΔmspI without methylation, generating a convenient reporter system to evaluate the expression of heterologous protein in C. cellulolyticum by green fluorescence. To further demonstrate the efficiency of the H10ΔmspI, double mutants H10ΔmspIΔldh and H10ΔmspIΔack were constructed by disrupting lactate dehydrogenase gene ccel2485 and acetate kinase gene ccel2136 in H10ΔmspI, respectively, without DNA methylation, and the stability of the double mutation was confirmed after the 100th generation. The mutant H10ΔmspI constructed here can be used as a platform for further targeted gene manipulation conveniently and efficiently. It will greatly facilitate the metabolic engineering of C. cellulolyticum aiming at faster cellulose degradation and higher biofuel production at the molecular level.


Assuntos
Clostridium cellulolyticum/genética , Desoxirribonuclease HpaII/genética , Técnicas de Inativação de Genes , Marcação de Genes , Engenharia Genética/métodos , Metilação de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Desoxirribonuclease HpaII/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa