Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(8): 3405-3419, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049096

RESUMO

It has been widely reported that probiotic consortia in the rhizosphere can enhance the plant resistance to pathogens. However, the general composition and functional profiles of bacterial community in soils which suppress multiple diseases for various plants remain largely unknown. Here, we combined metadata analysis with machine learning to identify the general patterns of bacterial-community composition in disease-suppressive soils. Disease-suppressive soils significantly enriched Firmicutes and Actinobacteria but showed a decrease in Proteobacteria and Bacteroidetes. Our machine-learning models accurately identified the disease-conducive and -suppressive soils with 54 biomarker genera, 28 of which were potentially beneficial. We further carried out a successive passaging experiment with the susceptible rps2 mutant of Arabidopsis thaliana invaded by Pseudomonas syringae pv. tomato DC3000 (avrRpt2) for functional verification of potential beneficial bacteria. The disease-suppressive ability of Kribbella, Nocardioides and Bacillus was confirmed, and they positively activated the pathogen-associated molecular patterns-triggered immunity pathway. Results also showed that chemical control by pesticides in agricultural production decreased the disease-suppressive ability of soil. This study provides a method for accurately predicting the occurrence of multiple diseases in soil and identified potential beneficial bacteria to guide a wide range of multiple-strain biological control strategies in agricultural management.


Assuntos
Arabidopsis , Solo , Arabidopsis/microbiologia , Bactérias/genética , Aprendizado de Máquina , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas , Pseudomonas syringae/genética , Microbiologia do Solo
2.
Environ Microbiol ; 23(11): 6895-6906, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34658124

RESUMO

Plant physiological and metabolic processes are modulated by rhythmic gene expression in a large part. Meanwhile, plants are also regulated by rhizosphere microorganisms, which are fed by root exudates and provide beneficial functions to their plant host. Whether the biorhythms in plants would transfer to the rhizosphere microbial community is still uncertain and their intricate connection remains poorly understood. Here, we investigated the role of the Arabidopsis circadian clock in shaping the rhizosphere microbial community using wild-type plants and clock mutants (cca1-1 and toc1-101) with transcriptomic, metabolomic and 16S rRNA gene sequencing analysis throughout a 24-h period. Deficiencies of the central circadian clock led to abnormal diurnal rhythms for thousands of expressed genes and dozens of root exudates. The bacterial community failed to follow obvious patterns in the 24-h period, and there was lack of coordination with plant growth in the clock mutants. Our results suggest that the robust rhythmicity of genes and root exudation due to circadian clock in plants is an important driving force for the positive succession of rhizosphere communities, which will feedback on plant development.


Assuntos
Proteínas de Arabidopsis , Rizosfera , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , RNA Ribossômico 16S , Fatores de Transcrição/genética
3.
J Hazard Mater ; 411: 125137, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858101

RESUMO

S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on plant growth by inducing hydrogen peroxide (H2O2) levels. The richness of the rhizosphere microbiome markedly decreased after S-ME treatment, although the abundance of some potential beneficial rhizobacteria, such as Rhizobiaceae and Burkholderiaceae, increased suggesting that plants recruited potential beneficial microorganisms to resist S-ME-induced stress. Spearman correlation analysis revealed that Rhizobiaceae and Burkholderiaceae were positively correlated with organic acids secreted by plants after S-ME treatment, implying that potential beneficial microorganisms may be attracted mainly by organic acids. Our results demonstrated the phytotoxicity of S-ME on crop growth and indicated both that S-ME could influence rhizosphere microorganism abundance and that recruitment of potential beneficial microorganisms could be the result of root exudate regulation.


Assuntos
Microbiota , Rizosfera , Acetamidas , Exsudatos e Transudatos , Peróxido de Hidrogênio , Raízes de Plantas , Plântula , Microbiologia do Solo , Triticum
4.
Sci Total Environ ; 786: 147434, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964776

RESUMO

Sertraline hydrochloride (Ser-HCl) is an effective and commonly used antidepressant drug, which is also frequently detected in aquatic environments. Our previous research showed that Ser-HCl changes the community composition of aquatic microbiome, but the understanding of the expression of functional pathways in microbial communities is still incomplete; to address this knowledge gap, we used meta-transcriptomics analysis to evaluate the toxicity of Ser-HCl to natural aquatic microbial communities cultured in laboratory microcosms. Meta-transcriptomic results show that a 15-day exposure to 50 µg/L Ser-HCl significantly changed the functional expression activity of aquatic microbial communities. Pathways related to lipid metabolism, energy metabolism, membrane transport function, and genetic information processing in the aquatic microbial community were severely inhibited under Ser-HCl treatment, but metabolism of cofactors and vitamins to alleviate biological toxicity after Ser-HCl exposure was enhanced. Our study thus reveals details of the effects of sertraline on the functioning of aquatic microbiome. Due to the extensive use of Ser-HCl and its strong biological activity, it should not continue to be an overlooked pollutant. Therefore, more attention should be paid to the negative effects of such biologically active drugs on the expression of aquatic microbiome.


Assuntos
Microbiota , Poluentes Químicos da Água , Antidepressivos/toxicidade , Água Doce , Sertralina/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 748: 141342, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818888

RESUMO

S-metolachlor (S-ME) is a widely used chiral herbicide that can cause potential ecological risks via long-term usage. In this work, we chose a model plant, wheat, as the test material to determine the effects of applying 10 mg/kg S-ME to soil on its fresh weight, chlorophyll and malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity and the diversity and structural composition of the phyllosphere microorganisms after 7 and 14 days of exposure. Our work showed that this concentration of residual S-ME in soil only slightly decreased plant biomass and had little effect on lipid peroxidation, the antioxidant enzyme system and chlorophyll content. Interestingly, although the test concentration of S-ME did not exert strong inhibitory effects on the physiological activities of wheat, it decreased the diversity of phyllosphere microbial communities and changed their structure, indicating that microorganisms were more sensitive stress indicators. S-ME reduced the colonization by some beneficial bacteria related to plant nitrogen fixation among the phyllosphere microorganisms, which influenced the growth and yield of wheat because these bacteria contribute to plant fitness. In addition, S-ME affected the association between the host and the composition of the phyllosphere microbial communities under different growth conditions. Our work provides insights into the ecological implications of the effects of herbicides on the phyllosphere microbiome.


Assuntos
Microbiota , Triticum , Acetamidas , Clorofila , Solo , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa