Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37837024

RESUMO

Watermarking is an excellent solution to protect multimedia privacy but will be damaged by attacks such as noise adding, image filtering, compression, and especially scaling and cutting. In this paper, we propose a watermarking scheme to embed the watermark in the DWT-DCT composite transform coefficients, which is robust against normal image processing operations and geometric attacks. To make our scheme robust to scaling operations, a resampling detection network is trained to detect the scaling factor and then rescale the scaling-attacked image before watermark detection. To make our scheme robust to cutting operations, a template watermark is embedded in the Y channel to locate the cutting position. Experiments for various low- and high-resolution images reveal that our scheme has excellent performance in terms of imperceptibility and robustness.

2.
Comput Biol Chem ; 112: 108113, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851150

RESUMO

The integration of artificial intelligence (AI) into smart agriculture boosts production and management efficiency, facilitating sustainable agricultural development. In intensive agricultural management, adopting eco-friendly and effective pesticides is crucial to promote green agricultural practices. However, exploring new insecticides species is a difficult and time-consuming task that involves significant risks. Enhancing compound druggability in the lead discovery phase could considerably shorten the discovery cycle, accelerating insecticides research and development. The Insecticide Activity Prediction (IAPred) model, a novel classic artificial intelligence-based method for evaluating the potential insecticidal activity of unknown functional compounds, is introduced in this study. The IAPred model utilized 27 insecticide-likeness features from PaDEL descriptors and employed an ensemble of Support Vector Machine (SVM) and Random Forest (RF) algorithms using the hard-vote mechanism, achieving an accuracy rate of 86 %. Notably, the IAPred model outperforms current models by accurately predicting the efficacy of novel insecticides such as nicofluprole, overcoming the limitations inherent in existing insecticide structures. Our research presents a practical approach for discovering and optimizing novel insecticide lead compounds quickly and efficiently.


Assuntos
Agricultura , Inteligência Artificial , Inseticidas , Inseticidas/farmacologia , Inseticidas/química , Algoritmos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa