Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2403763121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968111

RESUMO

Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia Tipo Ausência , Animais , Epilepsia Tipo Ausência/fisiopatologia , Camundongos , Tálamo/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Núcleos da Linha Média do Tálamo/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(12): e2200140119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286197

RESUMO

A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G­induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.


Assuntos
Canalopatias , Discinesias , Epilepsia Tipo Ausência , Canais de Potássio Ativados por Cálcio de Condutância Alta , Animais , Discinesias/genética , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Camundongos , Neurônios , Convulsões
3.
Biophys J ; 123(14): 2076-2084, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400542

RESUMO

Large-conductance Ca2+-activated K+ channels (BK channels) are formed by Slo1 subunits as a homotetramer. Besides Ca2+, other divalent cations, such as Cd2+, also activate BK channels when applied intracellularly by shifting the conductance-voltage relation to more negative voltages. However, we found that if the inside-out patch containing BK channels was treated with solution containing reducing agents such as dithiothreitol (DTT), then subsequent Cd2+ application completely inhibited BK currents. The DTT-dependent Cd2+ inhibition could be reversed by treating the patch with solutions containing H2O2, suggesting that a redox reaction regulates the Cd2+ inhibition of BK channels. Similar DTT-dependent Cd2+ inhibition was also observed in a mutant BK channel, Core-MT, in which the cytosolic domain of the channel is deleted, and in the proton-activated Slo3 channels but not observed in the voltage-gated Shaker K+ channels. A possible mechanism for the DTT-dependent Cd2+ inhibition is that DTT treatment breaks one or more disulfide bonds between cysteine pairs in the BK channel protein and the freed thiol groups coordinate with Cd2+ to form an ion bridge that blocks the channel or locks the channel at the closed state. However, surprisingly, none of the mutations of all cysteine residues in Slo1 affect the DTT-dependent Cd2+ inhibition. These results are puzzling, with an apparent contradiction: on one hand, a redox reaction seems to regulate Cd2+ inhibition of the channel, but on the other hand, no cysteine residue in the Slo1 subunit seems to be involved in such inhibition.


Assuntos
Cádmio , Ditiotreitol , Oxirredução , Cádmio/farmacologia , Ditiotreitol/farmacologia , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Humanos
4.
PLoS Comput Biol ; 19(9): e1011460, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37713443

RESUMO

Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.


Assuntos
Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Modelos Moleculares , Biofísica , Cálcio/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990467

RESUMO

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevis
6.
Cell Mol Life Sci ; 79(10): 532, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36205781

RESUMO

Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the ß regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkß mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKß deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKß deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKß was deleted in a strain that was naturally reluctant to bradyzoite development.


Assuntos
Parasitos , Toxoplasma , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ciclo Celular , Divisão Celular , Humanos , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(25): 14512-14521, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513714

RESUMO

Large-conductance Ca2+ and voltage-activated K+ (BK) channels control membrane excitability in many cell types. BK channels are tetrameric. Each subunit is composed of a voltage sensor domain (VSD), a central pore-gate domain, and a large cytoplasmic domain (CTD) that contains the Ca2+ sensors. While it is known that BK channels are activated by voltage and Ca2+, and that voltage and Ca2+ activations interact, less is known about the mechanisms involved. We explore here these mechanisms by examining the gating contribution of an interface formed between the VSDs and the αB helices located at the top of the CTDs. Proline mutations in the αB helix greatly decreased voltage activation while having negligible effects on gating currents. Analysis with the Horrigan, Cui, and Aldrich model indicated a decreased coupling between voltage sensors and pore gate. Proline mutations decreased Ca2+ activation for both Ca2+ bowl and RCK1 Ca2+ sites, suggesting that both high-affinity Ca2+ sites transduce their effect, at least in part, through the αB helix. Mg2+ activation also decreased. The crystal structure of the CTD with proline mutation L390P showed a flattening of the first helical turn in the αB helix compared to wild type, without other notable differences in the CTD, indicating that structural changes from the mutation were confined to the αB helix. These findings indicate that an intact αB helix/VSD interface is required for effective coupling of Ca2+ binding and voltage depolarization to pore opening and that shared Ca2+ and voltage transduction pathways involving the αB helix may be involved.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Domínios Proteicos/genética , Regulação Alostérica , Animais , Cátions Bivalentes/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/ultraestrutura , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Prolina/genética , Conformação Proteica em alfa-Hélice/genética , Relação Estrutura-Atividade , Xenopus laevis
8.
Opt Express ; 30(19): 34129-34139, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242433

RESUMO

The infrared absorption efficiency is essential for an infrared sensor. We propose a quartz bulk acoustic wave (BAW) uncooled infrared sensor coated with MXene quantum dot film. The infrared detection is realized by measuring the resonant frequency of a Y-cut quartz BAW sensitive unit. An infrared sensor is fabricated by MEMS process, then the MXene quantum dot film is coated through the spin coating technology. The mechanism of infrared absorption enhancement is analyzed. Test results show that after coating the film, the responsivity (R) of the sensor increased by nearly 41% at a wavelength of 830nm, from 10.88MHz/W to 15.28 MHz/W. The quartz BAW infrared sensor combined with MXene quantum dots film has the potential of high-performance infrared detection.

9.
J Biol Chem ; 295(22): 7743-7752, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341123

RESUMO

Toxoplasma gondii is a common protozoan parasite that infects a wide range of hosts, including livestock and humans. Previous studies have suggested that the type 2 fatty acid synthesis (FAS2) pathway, located in the apicoplast (a nonphotosynthetic plastid relict), is crucial for the parasite's survival. Here we examined the physiological relevance of fatty acid synthesis in T. gondii by focusing on the pyruvate dehydrogenase complex and malonyl-CoA-[acyl carrier protein] transacylase (FabD), which are located in the apicoplast to drive de novo fatty acid biosynthesis. Our results disclosed unexpected metabolic resilience of T. gondii tachyzoites, revealing that they can tolerate CRISPR/Cas9-assisted genetic deletions of three pyruvate dehydrogenase subunits or FabD. All mutants were fully viable in prolonged cultures, albeit with impaired growth and concurrent loss of the apicoplast. Even more surprisingly, these mutants displayed normal virulence in mice, suggesting an expendable role of the FAS2 pathway in vivo Metabolic labeling of the Δpdh-e1α mutant showed reduced incorporation of glucose-derived carbon into fatty acids with medium chain lengths (C14:0 and C16:0), revealing that FAS2 activity was indeed compromised. Moreover, supplementation of exogenous C14:0 or C16:0 significantly reversed the growth defect in the Δpdh-e1α mutant, indicating salvage of these fatty acids. Together, these results demonstrate that the FAS2 pathway is dispensable during the lytic cycle of Toxoplasma because of its remarkable flexibility in acquiring fatty acids. Our findings question the long-held assumption that targeting this pathway has significant therapeutic potential for managing Toxoplasma infections.


Assuntos
Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Toxoplasma/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Apicoplastos/genética , Ácidos Graxos/genética , Deleção de Genes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética
10.
Proc Natl Acad Sci U S A ; 115(7): 1646-1651, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29358396

RESUMO

Centipedes can subdue giant prey by using venom, which is metabolically expensive to synthesize and thus used frugally through efficiently disrupting essential physiological systems. Here, we show that a centipede (Scolopendra subspinipes mutilans, ∼3 g) can subdue a mouse (∼45 g) within 30 seconds. We found that this observation is largely due to a peptide toxin in the venom, SsTx, and further established that SsTx blocks KCNQ potassium channels to exert the lethal toxicity. We also demonstrated that a KCNQ opener, retigabine, neutralizes the toxicity of a centipede's venom. The study indicates that centipedes' venom has evolved to simultaneously disrupt cardiovascular, respiratory, muscular, and nervous systems by targeting the broadly distributed KCNQ channels, thus providing a therapeutic strategy for centipede envenomation.


Assuntos
Venenos de Artrópodes/toxicidade , Artrópodes/fisiologia , Canais de Potássio KCNQ/antagonistas & inibidores , Doenças do Sistema Nervoso/induzido quimicamente , Comportamento Predatório/efeitos dos fármacos , Anormalidades do Sistema Respiratório/induzido quimicamente , Animais , Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Camundongos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fenilenodiaminas/farmacologia , Anormalidades do Sistema Respiratório/tratamento farmacológico , Anormalidades do Sistema Respiratório/metabolismo
11.
Sensors (Basel) ; 21(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572612

RESUMO

In order to quantitatively study the interfered output of the accelerometer under an acoustic injection attack, a mathematical model for fitting and predicting the accelerometer output was proposed. With ADXL103 as an example, an acoustic injection attack experiment with amplitude sweeping and frequency sweeping was performed. In the mathematical model, the R-squared coefficient was R2 = 0.9990 in the acoustic injection attack experiment with amplitude sweeping, and R2 = 0.9888 with frequency sweeping. Based on the mathematical model, the dual frequency acoustic injection attack mode was proposed. The difference frequency signal caused by the nonlinear effect was not filtered by the low-pass filter. At a 115 dB sound pressure level, the maximum acceleration bias of the output was 4.4 m/s2 and the maximum amplitude of fluctuation was 4.97 m/s2. Two kinds of methods of prevention against acoustic injection attack were proposed, including changing the damping ratio of the accelerometer and adding a preposition low-pass filter.

12.
Mov Disord ; 35(10): 1868-1873, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32633875

RESUMO

BACKGROUND: The mutations of KCNMA1 BK-type K+ channel have been identified in patients with various movement disorders. The underlying pathophysiology and corresponding therapeutics are lacking. OBJECTIVES: To report our clinical and biophysical characterizations of a novel de novo KCNMA1 variant, as well as an effective therapy for the patient's dystonia-atonia spells. METHODS: Combination of phenotypic characterization, therapy, and biophysical characterization of the patient and her mutation. RESULTS: The patient had >100 dystonia-atonia spells per day with mild cerebellar atrophy. She also had autism spectrum disorder, intellectual disability, and attention deficit hyperactivity disorder. Whole-exome sequencing identified a heterozygous de novo BK N536H mutation. Our biophysical characterization demonstrates that N536H is a gain-of-function mutation with markedly enhanced voltage-dependent activation. Remarkably, administration of dextroamphetamine completely suppressed the dystonia-atonia spells. CONCLUSIONS: BK N536H is a gain-of-function that causes dystonia and other neurological symptoms. Our stimulant therapy opens a new avenue to mitigate KCNMA1-linked movement disorders. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Transtorno do Espectro Autista , Distonia , Deficiência Intelectual , Distonia/tratamento farmacológico , Distonia/genética , Feminino , Mutação com Ganho de Função , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Mutação/genética
13.
Parasitol Res ; 119(6): 1819-1828, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399721

RESUMO

Toxoplasma gondii is an obligate protozoan parasite infecting diverse hosts. Studies have demonstrated that different hosts respond differently to Toxoplasma infection. Pigs are among the most susceptible hosts of T. gondii, but the host-pathogen interactions that shape the outcome of infection in pigs are completely unknown. Here, we used dual RNA-seq to profile the transcriptomic changes of porcine alveolar macrophages (PAMs) upon Toxoplasma infection. Our results indicated that PAMs initiated different responses to Toxoplasma infection compared with mouse macrophages. First, although infected PAMs upregulated numerous pro-inflammatory factors, IL-12, which plays critical roles in IL-12~IFN-γ-mediated immunity against Toxoplasma infection in mice, was found unchanged during PAM infection. Second, the gene encoding iNOS that is responsible for nitric oxide (NO) production was also not induced in infected PAMs. Consistently, there was no NO level change in PAMs after infection. Third, it seems like Toxoplasma infection inhibited apoptosis in PAMs. On the parasite side, the most obvious change is the upregulation of genes involved in metabolism and macromolecule synthesis, such as the type II fatty acid synthesis in the apicoplast. Together, these results revealed distinct responses of PAMs to Toxoplasma infection and provide novel insights into Toxoplasma-pig interactions.


Assuntos
Macrófagos Alveolares/parasitologia , Toxoplasma/fisiologia , Animais , Apoptose/genética , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Inflamação/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Suínos , Toxoplasma/genética , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
14.
EMBO Rep ; 17(10): 1422-1430, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27566753

RESUMO

Iodine antiseptics exhibit superior antimicrobial efficacy and do not cause acquired microbial resistance. However, they are underused in comparison with antibiotics in infection treatments, partly because of their adverse effects such as pain and allergy. The cause of these noxious effects is not fully understood, and no specific molecular targets or mechanisms have been discovered. In this study, we show that iodine antiseptics cause pain and promote allergic contact dermatitis in mouse models, and iodine stimulates a subset of sensory neurons that express TRPA1 and TRPV1 channels. In vivo pharmacological inhibition or genetic ablation of these channels indicates that TRPA1 plays a major role in iodine antiseptics-induced pain and the adjuvant effect of iodine antiseptics on allergic contact dermatitis and that TRPV1 is also involved. We further demonstrate that iodine activates TRPA1 through a redox mechanism but has no direct effects on TRPV1. Our study improves the understanding of the adverse effects of iodine antiseptics and suggests a means to minimize their side effects through local inhibition of TRPA1 and TRPV1 channels.


Assuntos
Anti-Infecciosos Locais/efeitos adversos , Hipersensibilidade/etiologia , Iodo/efeitos adversos , Dor/etiologia , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Gânglios Espinais/citologia , Expressão Gênica , Predisposição Genética para Doença , Humanos , Hipersensibilidade/diagnóstico , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Dor/diagnóstico , Povidona/efeitos adversos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
15.
J Med Biol Eng ; 37(5): 780-789, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29213224

RESUMO

Gain-of-function mutations in the pore-forming subunit of IKs channels, KCNQ1, lead to short QT syndrome (SQTS) and lethal arrhythmias. However, how mutant IKs channels cause SQTS and the possibility of IKs-specific pharmacological treatment remain unclear. V141M KCNQ1 is a SQTS associated mutation. We studied its effect on IKs gating properties and changes in the action potentials (AP) of human ventricular myocytes. Xenopus oocytes were used to study the gating mechanisms of expressed V141M KCNQ1/KCNE1 channels. Computational models were used to simulate human APs in endocardial, mid-myocardial, and epicardial ventricular myocytes with and without ß-adrenergic stimulation. V141M KCNQ1 caused a gain-of-function in IKs characterized by increased current density, faster activation, and slower deactivation leading to IKs accumulation. V141M KCNQ1 also caused a leftward shift of the conductance-voltage curve compared to wild type (WT) IKs (V1/2 = 33.6 ± 4.0 mV for WT, and 24.0 ± 1.3 mV for heterozygous V141M). A Markov model of heterozygous V141M mutant IKs was developed and incorporated into the O'Hara-Rudy model. Compared to the WT, AP simulations demonstrated marked rate-dependent shortening of AP duration (APD) for V141M, predicting a SQTS phenotype. Transmural electrical heterogeneity was enhanced in heterozygous V141M AP simulations, especially under ß-adrenergic stimulation. Computational simulations identified specific IK1 blockade as a beneficial pharmacologic target for reducing the transmural APD heterogeneity associated with V141M KCNQ1 mutation. V141M KCNQ1 mutation shortens ventricular APs and enhances transmural APD heterogeneity under ß-adrenergic stimulation. Computational simulations identified IK1 blockers as a potential antiarrhythmic drug of choice for SQTS.

16.
Biophys J ; 110(1): 14-25, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26745405

RESUMO

Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications.


Assuntos
Fenômenos Eletrofisiológicos , Ativação do Canal Iônico , Canal de Potássio KCNQ1/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Espaço Intracelular/metabolismo , Canal de Potássio KCNQ1/química , Dados de Sequência Molecular , Porosidade
17.
Proc Natl Acad Sci U S A ; 110(47): 18922-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190995

RESUMO

Gating of ion channels by ligands is fundamental to cellular function, and ATP serves as both an energy source and a signaling molecule that modulates ion channel and transporter functions. The slowly activating K(+) channel I(Ks) in cardiac myocytes is formed by KCNQ1 and KCNE1 subunits that conduct K(+) to repolarize the action potential. Here we show that intracellular ATP activates heterologously coexpressed KCNQ1 and KCNE1 as well as I(Ks) in cardiac myocytes by directly binding to the C terminus of KCNQ1 to allow the pore to open. The channel is most sensitive to ATP near its physiological concentration, and lowering ATP concentration in cardiac myocytes results in I(Ks) reduction and action potential prolongation. Multiple mutations that suppress I(Ks) by decreasing the ATP sensitivity of the channel are associated with the long QT (interval between the Q and T waves in electrocardiogram) syndrome that predisposes afflicted individuals to cardiac arrhythmia and sudden death. A cluster of basic and aromatic residues that may form a unique ATP binding site are identified; ATP activation of the wild-type channel and the effects of the mutations on ATP sensitivity are consistent with an allosteric mechanism. These results demonstrate the activation of an ion channel by intracellular ATP binding, and ATP-dependent gating allows I(Ks) to couple myocyte energy state to its electrophysiology in physiologic and pathologic conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Arritmias Cardíacas/genética , Frequência Cardíaca/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Western Blotting , Fluorometria , Humanos , Mutagênese , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Análise de Sequência de DNA , Xenopus laevis
18.
Proc Natl Acad Sci U S A ; 110(32): 13180-5, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23861489

RESUMO

Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Feminino , Humanos , Ativação do Canal Iônico/genética , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Xenopus laevis
19.
J Neurosci ; 34(37): 12280-8, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209270

RESUMO

Coupling between the activation gate and sensors of physiological stimuli during ion channel activation is an important, but not well-understood, molecular process. One difficulty in studying sensor-gate coupling is to distinguish whether a structural perturbation alters the function of the sensor, the gate, or their coupling. BK channels are activated by membrane voltage and intracellular Ca(2+) via allosteric mechanisms with coupling among the activation gate and sensors quantitatively defined, providing an excellent model system for studying sensor-gate coupling. By studying BK channels expressed in Xenopus oocytes, here we show that mutation E219R in S4 alters channel function by two independent mechanisms: one is to change voltage sensor activation, shifting voltage dependence, and increase valence of gating charge movements; the other is to regulate coupling among the activation gate, voltage sensor, and Ca(2+) binding via electrostatic interactions with E321/E324 located in the cytosolic side of S6 in a neighboring subunit, resulting in a shift of the voltage dependence of channel opening and increased Ca(2+) sensitivity. These results suggest a structural arrangement of the inner pore of BK channels differing from that in other voltage gated channels.


Assuntos
Cálcio/química , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Aminoácidos/química , Animais , Células Cultivadas , Eletricidade Estática , Relação Estrutura-Atividade , Xenopus laevis
20.
J Biol Chem ; 289(8): 4735-42, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398688

RESUMO

BK channel ß subunits (ß1-ß4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous ß subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the ß4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and ß4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the ß4 subunit, providing structural insight into the molecular interactions between slo1 and ß4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying ß subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.


Assuntos
Conotoxinas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Eletricidade Estática , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Conotoxinas/química , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa