Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(7): 245, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611770

RESUMO

The aim of this article was to design a self-emulsifying drug delivery system (SEDDS) of loaded cepharanthine (CEP) to improve the oral bioavailability in rats. Based on the solubility determination and pseudo-ternary phase diagram, isopropyl palmitate (IPP) was chosen as the oil phase. Meanwhile, Cremophor RH40 and Macrogol 200 (PEG 200) were chosen as the emulsifier and co-emulsifier, respectively. This prescription was further optimized by using central composite design of response surface methodology. The optimized condition was CEP:IPP:Cremophor RH40:PEG 200=3.6:30.0:55.3:11.1 in mass ratio with maximum drug loading (36.21 mg/mL) and the minimum particle size (36.70 nm). The constructed CEP-SEDDS was characterized by dynamic light scattering, transmission electron microscopy, in vitro release and stability studies. The dissolution level of CEP-SEDDS was nearly 100% after 30 min in phosphate-buffered saline (PBS, pH 6.8) which was higher than that of the pure CEP (approximately 20%). In addition, in vivo pharmacokinetic study in rats showed that CEP-SEDDS dramatically improved bioavailability compared with active pharmaceutical ingredient (API) (the relative bioavailability was 203.46%). In this study, CEP-SEDDS was successfully prepared to enhance the oral bioavailability which might facilitate to increase its better clinical application. Graphical abstract.


Assuntos
Sistemas de Liberação de Medicamentos , Administração Oral , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Emulsões , Ratos , Solubilidade
2.
AAPS PharmSciTech ; 22(1): 37, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409925

RESUMO

In 2017, there are 451 million people with diabetes worldwide. These figures were expected to increase to 693 million by 2045. The research and development of hypoglycemic drugs has become a top priority. Among them, sulfonylurea hypoglycemic drugs such as glipizide are commonly used in non-insulin-dependent type II diabetes. In order to adapt to the wide range of hypoglycemic drugs and the different individual needs of patients, this topic used glipizide as a model drug, and prepared glipizide preparations with 3D printing technology. The purpose of this study was to investigate the prescription applicability and control-release behavior of structure and explore the application prospects of 3D printing personalized drug delivery formulations. This article aims to establish a production process for personalized preparations based on 3D printing technology. The process is easy to obtain excipients, universal prescriptions, flexible dosages, exclusive customization, and integrated automation. In this paper, the UV method was used to determine the in vitro release and content analysis method of glipizide; the physical and chemical properties of the glipizide were investigated. The established analysis method was inspected and evaluated, and the experimental results met the methodological requirements. Glipizide controlled-release tablets were prepared by the semisolid extrusion (SSE) method using traditional pharmaceutical excipients combined with 3D printing technology. The formulation composition, in vitro release, and printing process parameters of the preparation were investigated, and the final prescription and process parameters (traveling speed 6.0-7.7 mm/s and extruding speed 0.0060-0.0077 mm/s) were selected through comprehensive analysis. The routine analysis results of the preparation showed that the performance of the preparation meets the requirements. In order for 3D printing technology to play a better role in community medicine and telemedicine, this article further explored the universality of the above prescription and determined the scope of application of prescription drugs and dosages. Glipizide, gliclazide, lornoxicam, puerarin, and theophylline were used as model drugs, and the range of drug loading percentage was investigated. The results showed when the solubility of the drug is 9.45 -8.34 mg/mL, and the drug loading is 3-43%; the release behavior is similar.


Assuntos
Formas de Dosagem , Medicina de Precisão , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Excipientes/química , Glipizida/química , Glipizida/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Solubilidade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/uso terapêutico , Comprimidos
3.
AAPS PharmSciTech ; 20(7): 280, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399832

RESUMO

Sarsasapogenin derivative 5n (SGD 5n) is a new compound with potent antitumor efficacy, but the low solubility severely affects its absorption and bioavailability. Therefore, the SGD 5n-loaded mPEG-PLGA block copolymer micelles were developed to improve the value of SGD 5n in clinical application. The polymeric micelles were prepared by an organic solvent evaporation method, and the encapsulation efficiency (EE), drug loading (DL), critical micelle concentrations (CMC), morphology, particle size, and zeta potential were determined. The cytotoxicity was examined by the MTT assay, and the cellular uptake study was performed by confocal laser scanning microscopy. A model of tumor-bearing mouse was established to study the antitumor activity in vivo. The results demonstrated that the particle size of the prepared micelle was 124.6 ± 9.6 nm, the encapsulation efficiency was 82.0 ± 2.9%, and the drug loading was 8.3 ± 0.4%. The results of cytotoxicity and cellular uptake demonstrated that the SGD 5n-loaded micelles could efficiently enter tumor cells, and the cellular uptake of SGD 5n presented concentration and time dependence. This study demonstrated that the prepared SGD 5n-loaded polymeric micelles had significant antitumor activity and provided a basis for clinical development of new compound SGD 5n.


Assuntos
Poliésteres/química , Polietilenoglicóis/química , Espirostanos/química , Animais , Disponibilidade Biológica , Portadores de Fármacos , Humanos , Camundongos , Micelas
4.
AAPS PharmSciTech ; 20(2): 68, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627938

RESUMO

In the present contribution, the aim is to explore and establish a way in which 3D printing and gastro-retentive drug delivery systems (GRDDSs) are combined (focusing on inner structure innovation) to achieve extended and stable gastro-retention and controlled-release of drug. Three digital models diverse in construction were designed and substantialized by a pressure-assisted microsyringe (PAM) 3D printer. Preparations were characterized by means of DSC, XRD, FTIR, and SEM. In vitro buoyancy study and in vivo gamma scintigraphy method were conducted to validate gastro-retention property of these innovative preparations in vitro/in vivo respectively. Release kinetic model was established and release mechanism was discussed. Tablets manufactured under certain range of parameters (intersecting angle, full filling gap) were tight and accurate in shape. Tablets printed with specific parameters (full filling gap, 50%; nozzle extrusion speed, 0.006 mm/s; layer height, 0.4 mm; compensation value, 0.25; quantity of layers, 15; outline printing value, 2) exhibited satisfactory in vitro (10-12 h)/in vivo (8-10 h) retention ability and possessed stable 10-12 h controlled-release quality. In general, 3D printing has tremendous advantage over conventional fabrication technique in intricate drug delivery systems and will be widely employed in pharmacy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Derivados da Hipromelose/administração & dosagem , Impressão Tridimensional , Estômago/efeitos dos fármacos , Estômago/diagnóstico por imagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Ginkgo biloba , Humanos , Derivados da Hipromelose/química , Derivados da Hipromelose/metabolismo , Comprimidos/química , Tecnologia Farmacêutica/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
5.
AAPS PharmSciTech ; 20(6): 236, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236762

RESUMO

The objective of this study was to investigate the development of a novel puerarin gastric floating system with a concentric annular internal pattern by a 3D extrusion-based printing technique and to explore the flexibility of turning the release behavior through the design of the internal structure. The composition consisted of the conventional sustained-release pharmaceutical excipients without addition of foaming agent or light materials. First, the proper alcohol/water proportion was selected for the binding agent. The desired drug release behaviors and good floating properties were obtained either through modification of the formulation composition or adjustment of the internal structure. In vitro, the printed tablets were evaluated for drug release, mechanical properties, lag time, and floating duration time. The in vivo behaviors of the formulations were noted at certain time intervals through assessment of the radiographic pictures of healthy volunteers. The gastric retention time in the 3D-printed tablet was approximately 6 h in vivo. Results indicated these puerarin gastric floating 3D-printed tablets had great potential to achieve good gastric residence time and controlled release. Therefore, 3D extrusion-based printing appears to be appropriate for the production of oral administration systems, owing to its flexibility and the great floating ability and controlled-release capacity of its products.


Assuntos
Preparações de Ação Retardada/química , Isoflavonas/administração & dosagem , Impressão Tridimensional , Estômago , Comprimidos/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Excipientes/química , Humanos , Isoflavonas/farmacocinética
6.
Drug Dev Ind Pharm ; 44(5): 829-836, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29212376

RESUMO

The aim of this study was to prepare and evaluate ion-activated in situ gel ophthalmic drug delivery system based on κ-carrageenan (KC), using acyclovir as a model drug, hydroxypropyl methylcellulose (HPMC) as the viscosity agent and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as the penetration enhancer. The two ternary phase diagrams exhibited the effect of K+ and Ca2+ on the sol-to-gel transition, which turned out that KC was more sensitive to K+. The optimal ophthalmic matrix (prepared from KC and HPMC) was optimized with in vitro drug release test. The apparent permeability coefficient of acyclovir under 2% HP-ß-CD was found to have dramatically increased (2.16-ploid) than that of conventional eye drops (p < .05). The ion-activated in situ gel based on KC significantly delayed drug release and its bioavailability could be improved in comparison with the conventional eye drops. Hence, it has the potential to be a novel kind of ocular drug delivery system.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Aciclovir/química , Carragenina/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Ácido Glucurônico/química , Soluções Oftálmicas/administração & dosagem , Disponibilidade Biológica , Córnea , Liberação Controlada de Fármacos , Derivados da Hipromelose , Soluções Oftálmicas/química , Viscosidade
8.
Int J Pharm ; 618: 121679, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35314275

RESUMO

A customized implantable drug delivery system with the dual functions of playing a supporting role and providing continuous bacteriostasis is of great importance during the treatment of bone defect diseases. The main objective of this study was to explore the potential of using three-dimensional (3D) printing technologies to fabricate customized implants. Ciprofloxacin hydrochloride (Cipro) was chosen as the model drug, and two printing technologies, semisolid extrusion (SSE) and fused deposition modeling (FDM) were introduced. Six kinds of implants with customized irregular shapes were printed via FDM technology. Two kinds of implants with customized dosages were constructed via SSE technology. In addition, three kinds of implants with customized internal structures were produced via FDM and SSE technologies. The data for morphology, dimensions and mechanical properties demonstrated satisfactory printability and good printing accuracy when applying SSE and FDM technologies to produce the customized implants. The dissolution curves indicated that the desired customized drug release could be achieved by designing the specific internal structures. The biocompatibility examination showed that the printed implants possessed outstanding biocompatibility. In conclusion, all results suggested that 3D printing technologies provide a feasible method and novel strategy to fabricate customized implantable drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Ciprofloxacina , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Preparações Farmacêuticas , Próteses e Implantes , Tecnologia Farmacêutica
9.
Int J Pharm ; 596: 120201, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539997

RESUMO

Patient responses to doses vary widely, and affording limited doses to such a diverse population will inevitably yield unsatisfactory therapeutic effects and even adverse effects. In Particular, there is an urgent demand for a dynamic dose-control platform for pediatric patients, many of whom require diverse doses and flexible dose adjustments. The aim of this study was to explore the possibility of using a drop-on-powder (DoP) technology-based desktop 3D printer to build a dynamic dose-control platform for theophylline (TP) and metoprolol tartrate (MT). In addition, the impact of drug loading patterns on the accuracy of dose regulation was also assessed. All of the printed tablets exhibited good mechanical properties and satisfactory structural integrity. On printing tablets with target drug doses, the accuracy was in the range of 91.2~108% with a small variation coefficient in the range of 0.5~3.2%. Compared with traditional divided-dose methods, drop-on-powder 3D printing technology exhibited higher accuracy in dose regulation, but had less impact on the in vitro drug release behavior. The results in this work clearly indicate the possibility and ability of DoP technology as a promising method for constructing a dynamic dose-control platform for the fabrication of personalized medicines for pediatric patients.


Assuntos
Impressão Tridimensional , Teofilina , Criança , Liberação Controlada de Fármacos , Humanos , Pós , Comprimidos , Tecnologia Farmacêutica
10.
Acta Pharm Sin B ; 11(8): 2488-2504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34567958

RESUMO

Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.

11.
J Pharm Sci ; 110(11): 3678-3689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371072

RESUMO

A suitable drug-loaded implant delivery system that can effectively release antibacterial drug in the postoperative lesion area and help repair bone infection is very significant in the clinical treatment of bone defect. The work was aimed to investigate the feasibility of applying three-dimensional (3D) printing technology to prepare drug-loaded implants for bone repair. Semi-solid extrusion (SSE) and Fuse deposition modeling® (FDM) technologies were implemented and ciprofloxacin (CIP) was chosen as the model drug. All of the implants exhibited a smooth surface, good mechanical properties and satisfactory structural integrity as well as accurate dimensional size. In vitro drug release showed that the implants made by 3D printing technologies slowed down the initial drug burst effect and expressed a long-term sustained release behavior, compared with the implants prepared with traditional method. In addition, the patient-specific macrostructure implants, consisting of interconnected and different shapes pores, were created using unique lay down patterns. As a result, the weakest burst release effect and the sustained drug release were achieved in the patient-specific implants with linear pattern. These results clearly stated that 3D printing technology offers a viable approach to prepare control-releasing implants with patient-specific macro-porosity and presents novel strategies for treating bone infections.


Assuntos
Ciprofloxacina , Tecnologia Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Comprimidos
12.
J Pharm Sci ; 108(2): 977-986, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30315810

RESUMO

Levetiracetam therapy is often associated with high levels of individual variation in the recommended dose required to achieve preferential treatment. Thus, a reliable and dynamic regulation system to accurately tailor dose is necessary. The main objective of this study is to explore and prepare a dose-flexible control system suitable for rapid release tablets equipped with high drug loading and a cylindrical model design. Semi-solid extrusion 3-dimensional printing was utilized to fabricate a series of tablets of increased volume. This method was compatible with 3 patterns to regulate the volumes to manipulate the tablet mass and achieve tailored personalized precision dosing. All tablets from each pattern exhibited a smooth surface and regular shape, as well as sufficient mechanical strength. A good linear correlation between the mass and theoretical volume of the tablets was maintained, regardless of the pattern used. The range of dose accuracy was between 103.3% and 96.2%, with an acceptable variation coefficient in the range of 0.6%-3.2%. Faster release behavior for levetiracetam can be achieved from the small-sized tablets due to their larger surface area/mass ratio. All the results demonstrated the potential and capability of semi-solid extrusion 3-dimensional printing as a novel pharmaceutical manufacturing technique to provide a dynamic and highly accurate controllable system for preparing patient-tailored medicines.


Assuntos
Anticonvulsivantes/química , Composição de Medicamentos/instrumentação , Levetiracetam/química , Impressão Tridimensional , Anticonvulsivantes/administração & dosagem , Liberação Controlada de Fármacos , Levetiracetam/administração & dosagem , Solubilidade , Comprimidos , Resistência à Tração
13.
Asian J Pharm Sci ; 13(2): 120-130, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104385

RESUMO

To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer-Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time.

14.
Int J Pharm ; 535(1-2): 325-332, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29051121

RESUMO

Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design.


Assuntos
Dipiridamol/química , Composição de Medicamentos/métodos , Excipientes/química , Impressão Tridimensional , Disponibilidade Biológica , Celulose/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Mucosa Gástrica/metabolismo , Derivados da Hipromelose/química , Comprimidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa