Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Eur J Neurosci ; 58(4): 2961-2984, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37518943

RESUMO

Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.


Assuntos
Depressão , Qualidade de Vida , Humanos , Depressão/etiologia , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Fatores de Crescimento Neural/metabolismo
2.
Med Sci Monit ; 29: e938574, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36775942

RESUMO

BACKGROUND This single-center study of 15 patients with chronic tension-type headache aimed to compare the cranio-cervical extensor muscles between patients with chronic tension-type headache and healthy individuals and to explore the relationship between changes in cranio-cervical extensor muscles and quality of life (QoL). MATERIAL AND METHODS We recruited 15 patients with chronic tension-type headache and 15 healthy individuals. Patients with chronic tension-type headache were diagnosed by 2 neurologists according to the diagnostic criteria in the International Classification of Headache Disorders, 3rd edition (ICHD-3). Morphological changes in the cranio-cervical extensor muscle were detected using magnetic resonance imaging (MRI). QoL and the degree of neck dysfunction were assessed using the Headache Impact Test-6 (HIT-6) and Neck Disability Index (NDI), respectively. RESULTS The relative cross-sectional areas (rCSAs) of the rectus capitis posterior minor (RCPmin) were lower in patients with chronic tension-type headache than in healthy individuals. The HIT-6 scores (r=-0.93, P<0.001 and r=-0.85, P<0.001 for RCPmin right side and left side, respectively) and NDI scores (r=-0.75, P<0.001 and r=-0.70, P<0.001 for RCPmin right side and left side, respectively) were negatively associated with the rCSA of RCPmin in the chronic tension-type headache group. CONCLUSIONS Most patients with chronic tension-type headache experience RCPmin atrophy. The more evident the RCPmin atrophy, the worse the QoL of the patients with chronic tension-type headache.


Assuntos
Cefaleia do Tipo Tensional , Humanos , Qualidade de Vida , Músculo Esquelético/patologia , Cefaleia , Atrofia/patologia
3.
Med Sci Monit ; 29: e940589, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026421

RESUMO

The authors requested to correct the spelling of labels in Figure 3. The correct spelling should be "Healthy persons". The other elements of the figure remain the same, and the interpretation of the results remain unchanged. Reference: Xiaoman Min, Yongjun Huo, Ning Sun, Hongwei Zhi, Haitao Li, Sishuo Zhang, Wenqiang Cui, Yanlin Guo, Hongyun Wu: Relationship Between Changes in Cranio-Cervical Extensor Muscles and Quality of Life: A Single-Center Study of 15 Patients with Chronic Tension-Type Headache. Med Sci Monit, 2023; 29: e938574. DOI: 10.12659/MSM.938574.


Assuntos
Cefaleia do Tipo Tensional , Humanos , Qualidade de Vida , Pescoço , Músculo Esquelético
4.
Med Sci Monit ; 28: e934975, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35058421

RESUMO

BACKGROUND This study aimed to investigate frontoparietal network (FPN) dysfunction in participants with migraine without aura (MwoA). MATERIAL AND METHODS We selected 48 age-, sex-, and education level-matched graduate students (24 participants with MwoA [MwoA group] and 24 healthy controls). RS-fMRI and independent component analysis were used to examine the FPN and to compare abnormal encephalic regional homogeneity values. The Mindful Attention Awareness Scale (MAAS), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and Self-Rating Scale of Sleep (SRSS) were used to evaluate attention, anxiety, depression, and sleep, respectively. Pearson's correlation was applied to evaluate the association between abnormal brain areas and the scores for each scale. RESULTS Neural function activity in encephalic regions of FPN showed abnormal changes in the MwoA group. The MwoA group had significantly lower MAAS scores (P<0.001), higher SAS scores (P<0.001), and higher SDS (P=0.06) and SRSS scores (P=0.26). In the MwoA group, functional activity of the right parietal lobule in the left FPN was positively correlated with MAAS scores (P=0.01) and negatively correlated with SAS (P=0.02). The orbital part of left inferior frontal gyrus activity in the right FPN was positively correlated with SDS (P=0.04) and SRSS (P<0.001). Right superior marginal gyrus activity in the right FPN was positively correlated with SDS (P=0.02). CONCLUSIONS Abnormal FPN function was correlated with attention, anxiety, depression, and sleep status in the MwoA group. These results offer further insights into the evaluation and treatment of MwoA.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Enxaqueca sem Aura/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Enxaqueca sem Aura/diagnóstico por imagem , Adulto Jovem
5.
Pharm Dev Technol ; 25(9): 1043-1052, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32546042

RESUMO

This study aimed to optimize the preparation process of albendazole (ABZ) solid dispersion (SD) and enhance its dissolution rate and oral bioavailability in dogs. The ABZ-SD formulations were prepared by a fusion method with ABZ and polyethylene glycol 6000 (PEG 6000), poloxamer 188 (P 188) polymers at various weight ratios or the combination of PEG 6000&P 188. The characterizations of the optimal formulations were performed by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), in vitro dissolution test and molecular docking. The in vivo pharmacokinetic study was conducted in beagle dogs. As a result, ABZ solid dispersion based on PEG 6000&P 188 (1:2) was successfully prepared. The ABZ-SD formulation could significantly improve the apparent solubility and dissolution rate of ABZ compared with commercial tablets. Furthermore, the water solubility of ABZ-SD was improved mainly based on hydrogen bond association. Besides, at an oral dosage of 15 mg/kg ABZ, the SDs had higher Cmax values and areas under the curve (AUCs) compared to those of commercial ABZ tablets. Preparation of ABZ-loaded SDs by PEG 6000&P 188 is a promising strategy to improve the oral bioavailability of ABZ.


Assuntos
Albendazol/química , Poloxâmero/química , Albendazol/farmacocinética , Animais , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cães , Masculino , Simulação de Acoplamento Molecular/métodos , Polietilenoglicóis/química , Polímeros/química , Pós/química , Pós/farmacocinética , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos/química , Comprimidos/farmacocinética , Difração de Raios X/métodos
6.
Glia ; 67(9): 1680-1693, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31087583

RESUMO

Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.


Assuntos
Astrócitos/metabolismo , Dermatite Alérgica de Contato/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Prurido/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/patologia , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Peptídeo Liberador de Gastrina/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Prurido/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Medula Espinal/patologia
7.
BMC Plant Biol ; 19(1): 487, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711412

RESUMO

BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.


Assuntos
Flavonoides/biossíntese , Luz , Metaboloma/efeitos da radiação , Syringa/metabolismo , Transcriptoma/efeitos da radiação , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Syringa/genética , Syringa/efeitos da radiação
8.
Anesthesiology ; 131(5): 1125-1147, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31567367

RESUMO

BACKGROUND: Cancer pain is a pervasive clinical symptom impairing life quality. Vascular endothelial growth factor A has been well studied in tumor angiogenesis and is recognized as a therapeutic target for anti-cancer treatment. This study tested the hypothesis that vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 contribute to bone cancer pain regulation associated with spinal central sensitization. METHODS: This study was performed on female rats using a metastatic breast cancer bone pain model. Nociceptive behaviors were evaluated by mechanical allodynia, thermal hyperalgesia, spontaneous pain, and CatWalk gait analysis. Expression levels were measured by real-time quantitative polymerase chain reaction, western blot, and immunofluorescence analysis. Excitatory synaptic transmission was detected by whole-cell patch-clamp recordings. The primary outcome was the effect of pharmacologic intervention of spinal vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-signaling on bone cancer pain behaviors. RESULTS: The mRNA and protein expression of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 were upregulated in tumor-bearing rats. Spinal blocking vascular endothelial growth factor A or vascular endothelial growth factor receptor 2 significantly attenuated tumor-induced mechanical allodynia (mean ± SD: vascular endothelial growth factor A, 7.6 ± 2.6 g vs. 5.3 ± 3.3 g; vascular endothelial growth factor receptor 2, 7.8 ± 3.0 g vs. 5.2 ± 3.4 g; n = 6; P < 0.0001) and thermal hyperalgesia (mean ± SD: vascular endothelial growth factor A, 9.0 ± 2.4 s vs. 7.4 ± 2.7 s; vascular endothelial growth factor receptor 2, 9.3 ± 2.5 s vs. 7.5 ± 3.1 s; n = 6; P < 0.0001), as well as spontaneous pain and abnormal gaits. Exogenous vascular endothelial growth factor A enhanced excitatory synaptic transmission in a vascular endothelial growth factor receptor 2-dependent manner, and spinal injection of exogenous vascular endothelial growth factor A was sufficient to cause pain hypersensitivity via vascular endothelial growth factor receptor 2-mediated activation of protein kinase C and Src family kinase in naïve rats. Moreover, spinal blocking vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 pathways suppressed protein kinase C-mediated N-methyl-D-aspartate receptor activation and Src family kinase-mediated proinflammatory cytokine production. CONCLUSIONS: Vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 contributes to central sensitization and bone cancer pain via activation of neuronal protein kinase C and microglial Src family kinase pathways in the spinal cord.


Assuntos
Neoplasias Ósseas/metabolismo , Dor do Câncer/metabolismo , Medição da Dor/métodos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Neoplasias Ósseas/patologia , Dor do Câncer/patologia , Feminino , Injeções Espinhais , Medição da Dor/efeitos dos fármacos , Quinazolinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
9.
BMC Vet Res ; 15(1): 224, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266490

RESUMO

BACKGROUND: As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group. Thus, the continuous use of antibiotics in dairy livestock enterprise will go a long way in increasing tylosin resistance. However, the mechanism of tylosin-resistant S. xylosus is not clear. Here, isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods was used to find resistance-related proteins. RESULTS: We compared the differential expression of S. xylosus in response to tylosin stress by iTRAQ. A total of 155 proteins (59 up-regulated, 96 down-regulated) with the fold-change of >1.2 or <0.8 (p value ≤0.05) were observed between the S. xylosus treated with 1/2 MIC (0.25 µg/mL) tylosin and the untreated S. xylosus. Bioinformatic analysis revealed that these proteins play important roles in stress-response and transcription. Then, in order to verify the relationship between the above changed proteins and mechanism of tylosin-resistant S. xylosus, we induced the tylosin-resistant S. xylosus, and performed quantitative PCR analysis to verify the changes in the transcription proteins and the stress-response proteins in tylosin-resistant S. xylosus at the mRNA level. The data displayed that ribosomal protein L23 (rplw), thioredoxin(trxA) and Aldehyde dehydrogenase A(aldA-1) are up-regulated in the tylosin-resistant S. xylosus, compared with the tylosin-sensitive strains. CONCLUSION: Our findings demonstrate the important of stress-response and transcription in the tylosin resistance of S. xylosus and provide an insight into the prevention of this resistance, which would aid in finding new medicines .


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteoma/análise , Staphylococcus/efeitos dos fármacos , Tilosina/farmacologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteômica/métodos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Brain Behav Immun ; 68: 132-145, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29051087

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. However, the role of spinal microglia in CIPN is not completely understood. In this study, cisplatin-treated mice displayed persistent mechanical allodynia, sensory deficits and decreased density of intraepidermal nerve fibers (IENFs). In the spinal cord, activation of microglia, but not astrocyte, was persistently observed until week five after the first cisplatin injection. Additionally, mRNA levels of inflammation related molecules including IL-1ß, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD16, were increased after cisplatin treatment. Intraperitoneal (i.p.) or intrathecal (i.t.) injection with minocycline both alleviated cisplatin-induced mechanical allodynia and sensory deficits, and prevented IENFs loss. Furthermore, cisplatin enhanced triggering receptor expressed on myeloid cells 2 (TREM2) /DNAX-activating protein of 12 kDa (DAP12) signaling in the spinal cord microglia. The blockage of TREM2 by i.t. injecting anti-TREM2 neutralizing antibody significantly attenuated cisplatin-induced mechanical allodynia, sensory deficits and IENFs loss. Meanwhile, anti-TREM2 neutralizing antibody prominently suppressed the spinal IL-6, TNF-α, iNOS and CD16 mRNA level, but it dramatically up-regulated the anti-inflammatory cytokines IL-4 and IL-10. The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.


Assuntos
Glicoproteínas de Membrana/metabolismo , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/metabolismo , Cisplatino/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/fisiologia , Minociclina/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Dor/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/fisiologia , Transdução de Sinais , Medula Espinal/patologia , Medula Espinal/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Trends Pharmacol Sci ; 45(3): 268-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296675

RESUMO

Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.


Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Olfato , Descoberta de Drogas , Encéfalo/metabolismo , Proteínas de Neoplasias
12.
Aging (Albany NY) ; 16(3): 2953-2977, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329443

RESUMO

OBJECTIVE: The extracellular phosphoprotein, secreted phosphoprotein 1 (SPP1), plays a crucial role in various tumors and regulating the immune system. This study aimed to evaluate its prognostic value and relationship to immune infiltration in lung adenocarcinoma (LUAD). METHODS: In the TCGA and GEO datasets, the information on clinic and transcriptome analysis of SPP1 in non-small-cell lung cancer (NSCLC) was examined accordingly. The association of SPP1 expression with overall survival and clinicopathologic characteristics was investigated by univariate and multivariate analysis. CancerSEA database was utilized to investigate the role of SPP1 at the cellular level by single-cell analysis. Additionally, the CIBERSORT algorithm was utilized to assess the correlation among the immune cells that infiltrated. RESULTS: NSCLC tissues exhibited a notable rise in SPP1 expression compared with that of normal tissues. Furthermore, the overexpression of SPP1 was substantially associated with clinicopathological features and unfavorable survival outcomes in individuals with LUAD, whereas no such correlation was observed in lung squamous cell carcinoma. Immune cells that infiltrate tumors and their corresponding genes were associated with SPP1 expression levels in LUAD. CONCLUSIONS: SPP1 is a reliable indicator for assessing LUAD immune infiltration status and prognosis. With this approach, SPP1 can help earlier LUAD diagnosis and act as a possible immunotherapy target.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Osteopontina/genética , Prognóstico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética
13.
Mol Neurobiol ; 61(4): 1990-2005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37837492

RESUMO

Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Fator de Necrose Tumoral alfa , MicroRNAs/genética , Inflamação , Biologia Computacional , RNA Mensageiro , Interleucina-23
14.
J Chem Theory Comput ; 20(11): 4499-4513, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394691

RESUMO

Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s-1) is in close agreement with surface plasmon resonance experiments (0.12 s-1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Termodinâmica , Cinética , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Cadeias de Markov , Humanos
15.
Sci Adv ; 10(11): eadk3126, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489361

RESUMO

Perception of pathogen/microbial-associated molecular patterns (P/MAMPs) by plant cell surface receptors leads to a sustained burst of reactive oxygen species (ROS), a key feature of P/MAMP-triggered immunity (PTI). Here we report that P/MAMP recognition leads to a rapid nitrosative burst, initiating the accumulation of nitric oxide (NO), subsequently leading to S-nitrosylation of the receptor-like cytoplasmic kinase (RLCK), botrytis-induced kinase 1 (BIK1), at Cys80. This redox-based, posttranslational modification, promotes the phosphorylation of BIK1, subsequently resulting in BIK1 activation and stabilization. Further, BIK1 S-nitrosylation increases its physical interaction with RBOHD, the source of the apoplastic oxidative burst, promoting ROS formation. Our data identify mechanistic links between rapid NO accumulation and the expression of PTI, providing insights into plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Vegetal
16.
Nat Biotechnol ; 42(2): 229-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361054

RESUMO

The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.


Assuntos
Aprendizado de Máquina , Proteínas de Membrana , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Biologia Computacional , Desenvolvimento de Medicamentos
17.
Sci Rep ; 14(1): 11947, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789486

RESUMO

A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Medicina Tradicional Chinesa , Metabolômica , Transcriptoma , Animais , Metabolômica/métodos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Medicina Tradicional Chinesa/métodos , Masculino , Redes Reguladoras de Genes , Ratos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Síndrome , Ratos Sprague-Dawley
18.
J Pain Res ; 17: 1091-1105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510563

RESUMO

Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.

19.
Nat Commun ; 15(1): 3369, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643171

RESUMO

One-unit-cell FeSe films on SrTiO3 substrates are of great interest owing to significantly enlarged pairing gaps characterized by two coherence peaks at ±10 meV and ±20 meV. In-situ transport measurement is desired to reveal novel properties. Here, we performed in-situ microscale electrical transport and combined scanning tunneling microscopy measurements on continuous one-unit-cell FeSe films with twin boundaries. We observed two spatially coexisting superconducting phases in domains and on boundaries, characterized by distinct superconducting gaps ( Δ 1 ~15 meV vs. Δ 2 ~10 meV) and pairing temperatures (Tp1~52.0 K vs. Tp2~37.3 K), and correspondingly two-step nonlinear V ~ I α behavior but a concurrent Berezinskii-Kosterlitz-Thouless (BKT)-like transition occurring at T BKT ~28.7 K. Moreover, the onset transition temperature T c onset ~54 K and zero-resistivity temperature T c zero ~31 K are consistent with Tp1 and T BKT , respectively. Our results indicate the broadened superconducting transition in FeSe/SrTiO3 is related to intrinsic electronic inhomogeneity due to distinct two-gap features and phase fluctuations of two-dimensional superconductivity.

20.
RSC Adv ; 13(7): 4422-4430, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760312

RESUMO

Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky ß-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa