Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771496

RESUMO

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Assuntos
Fusão Celular/métodos , Quimera/genética , Células-Tronco Embrionárias/citologia , Células Híbridas , Camundongos , Ratos , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Haploidia , Masculino , Camundongos Endogâmicos , Ratos Endogâmicos F344 , Especificidade da Espécie , Inativação do Cromossomo X
3.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478845

RESUMO

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Adenosina/metabolismo , RNA Mensageiro/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
4.
EMBO J ; 43(20): 4542-4577, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39192031

RESUMO

Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.


Assuntos
Senescência Celular , Homólogo 5 da Proteína Cromobox , Heterocromatina , Animais , Humanos , Camundongos , Montagem e Desmontagem da Cromatina , Homólogo 5 da Proteína Cromobox/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Transdução de Sinais
5.
Nature ; 583(7815): 282-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32218527

RESUMO

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Betacoronavirus/química , Betacoronavirus/classificação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genômica , Humanos , Malásia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/virologia
6.
Methods ; 226: 61-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631404

RESUMO

As the most abundant mRNA modification, m6A controls and influences many aspects of mRNA metabolism including the mRNA stability and degradation. However, the role of specific m6A sites in regulating gene expression still remains unclear. In additional, the multicollinearity problem caused by the correlation of methylation level of multiple m6A sites in each gene could influence the prediction performance. To address the above challenges, we propose an elastic-net regularized negative binomial regression model (called m6Aexpress-enet) to predict which m6A site could potentially regulate its gene expression. Comprehensive evaluations on simulated datasets demonstrate that m6Aexpress-enet could achieve the top prediction performance. Applying m6Aexpress-enet on real MeRIP-seq data from human lymphoblastoid cell lines, we have uncovered the complex regulatory pattern of predicted m6A sites and their unique enrichment pathway of the constructed co-methylation modules. m6Aexpress-enet proves itself as a powerful tool to enable biologists to discover the mechanism of m6A regulatory gene expression. Furthermore, the source code and the step-by-step implementation of m6Aexpress-enet is freely accessed at https://github.com/tengzhangs/m6Aexpress-enet.


Assuntos
Regulação da Expressão Gênica , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica/genética , Biologia Computacional/métodos , Metilação , Software , Adenosina/metabolismo , Adenosina/genética , Adenosina/análogos & derivados , Análise de Regressão
7.
Am J Physiol Cell Physiol ; 327(5): C1178-C1191, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39246141

RESUMO

Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8+ TRM cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach. NEW & NOTEWORTHY The role of CD8+ TRM cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8+ TRM cells, thereby exacerbating pulmonary fibrosis.


Assuntos
Bleomicina , Linfócitos T CD8-Positivos , Células T de Memória , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Linfócitos T CD8-Positivos/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Camundongos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Pulmão/patologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Memória Imunológica , Masculino , Modelos Animais de Doenças , Transferência Adotiva
8.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594370

RESUMO

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Metotrexato , Tetra-Hidrofolato Desidrogenase , Humanos , Metotrexato/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Antimetabólitos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos
9.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436593

RESUMO

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Colangiocarcinoma , Exossomos , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Lisossomos/fisiologia , Complexo de Endopeptidases do Proteassoma , PTEN Fosfo-Hidrolase/metabolismo , Estudos Retrospectivos
10.
J Med Virol ; 96(6): e29711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847304

RESUMO

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Assuntos
Genoma Viral , Filogenia , Infecções Respiratórias , Humanos , China/epidemiologia , Genoma Viral/genética , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Sistema Respiratório/virologia , Pré-Escolar , Adulto , Criança , RNA Viral/genética , Pessoa de Meia-Idade
11.
Exp Eye Res ; 239: 109753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142764

RESUMO

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Assuntos
Organofosfatos , Quinazolinas , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Angiogênese , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Divisão Celular , Proliferação de Células , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio , Neovascularização Retiniana/metabolismo , RNA Interferente Pequeno/uso terapêutico
12.
Mol Psychiatry ; 28(2): 625-638, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36195641

RESUMO

Dopamine (DA) acts as a key regulator in controlling emotion, and dysfunction of DA signal has been implicated in the pathophysiology of some psychiatric disorders, including anxiety. Ventral tegmental area (VTA) is one of main regions with DA-producing neurons. VTA DAergic projections in mesolimbic brain regions play a crucial role in regulating anxiety-like behaviors, however, the function of DA signal within VTA in regulating emotion remains unclear. Here, we observe that pharmacological activation/inhibition of VTA D1 receptors will alleviate/aggravate mouse anxiety-like behaviors, and knockdown of VTA D1 receptor expression also exerts anxiogenic effect. With fluorescence in situ hybridization and electrophysiological recording, we find that D1 receptors are functionally expressed in VTA neurons. Silencing/activating VTA D1 neurons bidirectionally modulate mouse anxiety-like behaviors. Furthermore, knocking down D1 receptors in VTA DA and glutamate neurons elevates anxiety-like state, but in GABA neurons has the opposite effect. In addition, we identify the glutamatergic projection from VTA D1 neurons to lateral septum is mainly responsible for the anxiolytic effect induced by activating VTA D1 neurons. Thus, our study not only characterizes the functional expression of D1 receptors in VTA neurons, but also uncovers the pivotal role of DA signal within VTA in mediating anxiety-like behaviors.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Animais , Camundongos , Ansiedade , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Hibridização in Situ Fluorescente , Área Tegmentar Ventral/metabolismo , Receptores de Dopamina D1/metabolismo
13.
Gynecol Oncol ; 182: 82-90, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262243

RESUMO

OBJECTIVE: The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive biomarkers for the development of chemoresistance in high-grade serous ovarian cancer (HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, we sought to identify predictors that would better stratify outcomes for women with intermediate-sensitive HGSOC. METHODS: Women diagnosed with HGSOC and known platinum sensitivity status were selected for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, and differential 5hmC features were identified using DESeq2 to establish a model predictive of chemoresistance. RESULTS: A multivariate model consisting of three features (preoperative CA-125, largest residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and sensitive-like strata with a significant difference in overall survival (OS). Independent analysis of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable prognostic factor for HGSOC. CONCLUSIONS: We have developed a novel multivariate model based on clinico-pathologic data and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These results merit further investigation of the predictive capability of our model in larger cohorts.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores
14.
Artigo em Inglês | MEDLINE | ID: mdl-39322221

RESUMO

Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.

15.
Nature ; 557(7703): 43-49, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695866

RESUMO

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Assuntos
Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Variação Genética , Genoma de Planta/genética , Oryza/classificação , Oryza/genética , Ásia , Evolução Molecular , Genes de Plantas/genética , Genética Populacional , Genômica , Haplótipos , Mutação INDEL/genética , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
16.
Acta Pharmacol Sin ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294445

RESUMO

Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 µmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.

17.
J Eur Acad Dermatol Venereol ; 38 Suppl 3: 12-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189671

RESUMO

BACKGROUND: UV radiation exposure causes skin irritation, erythema, darkening and barrier disruption by inducing oxidative stress and inflammation. Glutathione, a master antioxidant, plays an important role in the antioxidant defence network of the skin. OBJECTIVE: This study aimed to assess the in vitro protective effects of the glutathione amino acid precursors blend (GAP) on transcriptomic and phenotypic endpoints against UVB-induced challenges. METHODS: Normal human epidermal melanocytes (NHEMs) were exposed to GAP, ascorbic acid (AA) and its derivatives. Viability was assessed using the CCK8 method. Melakutis®, a pigmented living skin equivalent (pLSE) model, underwent repeated 50 mJ/cm2 UVB irradiation with or without GAP treatment. Images of the model were captured with consistent camera parameters, and the model's light intensity was measured using a spectrophotometer. Melanin content was determined by measuring absorbance at 405 nm. Confirmation of melanin deposition and distribution was achieved through Fontana-Masson staining. Transcriptomic analysis was conducted using RNA sequencing (RNA-Seq), and a machine learning approach was employed for transcriptomic aging clock analysis. RESULTS: In NHEMs, all tested compounds exhibited over 85% viability compared to the vehicle control, indicating no heightened risk of cytotoxicity. Notably, GAP demonstrated greater efficacy in inhibiting melanin production than AA derivatives at equivalent concentrations. In pLSE models, GAP notably enhanced model lightness, and reduced melanin content and deposition following the UVB challenge, whereas AA showed minimal impact. GAP effectively counteracted UVB-induced alterations in gene expression linked to pigmentation, inflammation and aging. Moreover, recurrent UVB exposure substantially elevated the biological age of pLSE models, a phenomenon mitigated by GAP treatment. CONCLUSIONS: In NHEMs, GAP exhibited enhanced effectiveness in inhibiting melanin production at identical tested doses in comparison to AA derivatives. Noteworthy protective effects of GAP against UVB irradiation were observed in the pLSE models, as evidenced by skin pigmentation measurements and transcriptomic changes.


Assuntos
Transtornos da Pigmentação , Pigmentação da Pele , Humanos , Antioxidantes , Aminoácidos , Melaninas , Glutationa , Ácido Ascórbico/farmacologia , Inflamação
18.
J Eur Acad Dermatol Venereol ; 38 Suppl 3: 3-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189670

RESUMO

BACKGROUND: Although glutathione (GSH) has long been considered a master antioxidant, poor stability and bioavailability limit its application in skin protection. To overcome the challenges, Unilever R&D formulated a Glutathione Amino acid Precursors blend (named GAP) to boost GSH de novo synthesis. OBJECTIVE: Determine whether GAP can boost GSH levels and provide skin protection against stressors. METHODS: Normal human epidermal keratinocytes were treated with GAP, with or without stressors, namely, menadione, blue light or pollutants. Ascorbic acid was used as a benchmark. The levels of GSH, glutathione disulfide (GSSG), adenosine triphosphate (ATP) and reactive oxygen species (ROS) were quantified. A placebo-controlled clinical study was conducted on 21 female subjects who received product applications and subsequent UV radiation. Tape strip samples were collected from the subjects for GSH and GSSG quantification using ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS). The UV-protective effect of GAP was investigated using ex vivo skin. Biomarkers related to DNA damage and the skin barrier were analysed using immunohistochemistry. RESULTS: Glutathione amino acid precursors significantly increased the GSH levels and GSH/GSSG ratio in normal human epidermal keratinocytes. Menadione treatment resulted in excessive ROS production and a decline in ATP levels, which were effectively abrogated by GAP. The protective effects of GAP against menadione-induced oxidative stress were superior to those of ascorbic acid. In addition, GAP effectively protected the cells against blue light-induced ROS production and pollutant-induced ATP depletion. Topical application of the GAP formulation significantly elevated the skin GSH/GSSG ratio in a clinical study. Ex vivo skin treated with the GAP formulation displayed a reduction in DNA damage and high levels of barrier proteins after UV exposure. CONCLUSIONS: Glutathione amino acid precursors effectively increases cellular GSH levels to protect the skin from oxidative and environmental stresses.


Assuntos
Aminoácidos , Vitamina K 3 , Feminino , Humanos , Dissulfeto de Glutationa , Espécies Reativas de Oxigênio , Cromatografia Líquida , Espectrometria de Massas em Tandem , Glutationa , Estresse Oxidativo , Trifosfato de Adenosina , Ácido Ascórbico/farmacologia
19.
Ophthalmic Res ; 67(1): 499-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39168111

RESUMO

INTRODUCTION: The aim of the study was to examine alterations in visual acuity in patients with diabetic macular edema (DME), classified according to the TCED-HFV optical coherence tomography (OCT) system, following anti-vascular epithelial growth factor (VEGF) therapy. METHODS: The medical records of patients with DME receiving anti-VEGF therapy were retrospectively reviewed. Patients were divided into four groups according to the TCED-HFV OCT classification. Patient demographic and clinical characteristics and best-corrected visual acuity (BCVA) before and after treatment were compared among the groups. RESULTS: The BCVA before treatment was 0.49 ± 0.18, 0.81 ± 0.41, 0.83 ± 0.41, and 0.82 ± 0.49 in the early DME, advanced DME, severe DME, and atrophic maculopathy groups, respectively. The BCVA in the early DME group was therefore significantly lower than that in the other three groups (p = 0.042). After treatment, the BCVA improved to 0.15 ± 0.17, 0.52 ± 0.31, 0.62 ± 0.32, and 0.69 ± 0.47 in the early DME, advanced DME, severe DME, and atrophic maculopathy groups, respectively (p < 0.005). There were some differences among patients in the four groups in terms of the duration of diabetes, percentage of hemoglobin A1c, and duration of hypertension. CONCLUSION: The TCED-HFV OCT classification of patients with DME is exact and functional and can allow the severity of DME, and its response to anti-VEGF therapy, to be estimated.


Assuntos
Inibidores da Angiogênese , Retinopatia Diabética , Injeções Intravítreas , Edema Macular , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Humanos , Tomografia de Coerência Óptica/métodos , Edema Macular/tratamento farmacológico , Edema Macular/classificação , Edema Macular/diagnóstico , Edema Macular/etiologia , Masculino , Estudos Retrospectivos , Feminino , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/classificação , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/fisiopatologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Ranibizumab/uso terapêutico , Ranibizumab/administração & dosagem , Macula Lutea/patologia , Macula Lutea/diagnóstico por imagem , Bevacizumab/uso terapêutico , Seguimentos , Angiofluoresceinografia/métodos , Resultado do Tratamento
20.
Biomed Chromatogr ; 38(5): e5838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342982

RESUMO

Strobilanthes sarcorrhiza (CTS) is a medicinal plant with various pharmacological effects such as tonifying kidney and anti-inflammatory. However, the chemical composition and difference of its four parts (leaves, stems, rhizomes, and root tubers) have been rarely reported. In this study, ultrafast flow liquid chromatography coupled with quadrupole-time-of-flight MS was applied to analyze the chemical profile of CTS and identify 55 compounds, including terpenoids, phenylethanol glycosides, fatty acid derivatives, chain glycosides, flavonoid glycosides, and others. Among these compounds, 34 compounds were first identified in CTS. They were mainly terpenoids, phenylethanol glycosides, fatty acid derivatives, and so forth. Multivariate statistical analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis were also used to evaluate the difference in chemical compounds from the four parts of CTS. The results showed that phenylethanol glycosides were the main compounds of the underground parts, while terpenoids were the main compounds of the aboveground parts. This study revealed the chemical diversity and similarity of CTS and suggested that the rhizomes could be used as an alternative medicinal part to improve the resource utilization of CTS.


Assuntos
Espectrometria de Massas , Análise Multivariada , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Extratos Vegetais/química , Terpenos/análise , Terpenos/química , Glicosídeos/análise , Glicosídeos/química , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa