Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 45(20): 5728-5731, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057269

RESUMO

An ultrashort mid-infrared (IR) source beyond 5 µm is crucial for a plethora of existing and emerging applications in spectroscopy, medical diagnostics, and high-field physics. Nonlinear generation of such sources from well-developed near-IR lasers, however, remains a challenge due to the limitation of mid-IR crystals. Based on oxide La3Ga5.5Nb0.5O14 (LGN) crystals, here we report the generation of femtosecond pulses tunable from 3 to 7 µm by intrapulse difference-frequency generation of 7.5 fs, 800 nm pulses. The efficiency and bandwidth dependences on pump polarization and crystal length are studied for both Type-I and Type-II phase-matching configurations. Maximum pulse energy of ∼10nJ is generated at 5.2 µm with a conversion efficiency of ∼0.14%. Because of the few-cycle pump pulse duration, the generated mid-IR pulses are as short as about three cycles. These results, to the best of our knowledge, represent the first experimental demonstration of LGN in generating mid-IR ultrashort pulses.

2.
Opt Express ; 27(12): 16812-16822, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252901

RESUMO

A novel chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems was proposed. The pre-compensation scheme consists of a convex lens, group of concave lenses, and a spherical reflector combined with a conventional vacuum chamber. It provides a versatile method to accurately compensate the chromatic aberration of an entire laser system via controlling the amount of propagation time delay (PTD) induced by the compensator without changing the input and output beam size. A compensator, tailored based on the proposed scheme, was designed and experimentally evaluated for the Shen-Guang-II 5PW (SG-II 5PW) laser system at Shanghai Institute of Optics and Fine Mechanics (SIOM). The experimental results verified that chromatic aberration in the laser system was almost fully compensated: the size of laser beam focused by an f/2.42 off-axis parabolic mirror (OAP) was reduced tremendously from 32×18µm2to about 4×4µm2at full width at half maximum (FWHM). The proposed scheme provides the flexibility to accurately correct chromatic aberration in high-power laser systems within a wide dynamic range.

3.
Opt Lett ; 43(23): 5713-5716, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499975

RESUMO

The optical aperture of ultrashort extreme intensity laser facilities, which reach 10 PW, will be beyond several hundred millimeters. DKDP is by now the only nonlinear crystal that can be grown to such diameter and used in the main optical parametric chirped-pulse amplification (OPCPA) amplifier of such a laser system. Here, at the signal wavelength of 808 nm for the first time, we experimentally present a broadband OPCPA system that consists of a pre-amplifier in BBO crystals and a main OPCPA amplifier in two 95% deuterated DKDP crystals. The final amplified spectrum bandwidth exceeds 50 nm, and a compressed pulse duration of 27 fs has been measured. The conversion efficiency of the main OPCPA amplifier reached 24%, and a net signal gain of 13 was obtained. For the high energy OPCPA amplifier, the influence due to partial absorption on the idler pulses in DKDP crystal is theoretically analyzed. The results indicate the potential utilization of high deuterated DKDP for the main OPCPA amplifiers in a multi-petawatt laser system at 808 nm wavelength.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa