Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(19): 22738-22749, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041580

RESUMO

Control and manipulation of sound is of critical importance to many different scientific and engineering fields, requiring the design of rigid physical structures with precise geometries and material properties for the desired acoustics. In this work, we demonstrate the ability to manipulate the direction and magnitude of sound waves traveling in air using laser light, without the need for physical interfaces associated with different materials. Efficient reflection of sound waves off of transient, optically generated, abrupt air density barriers is demonstrated, with acoustic reflections greater than 25% of the incident acoustic wave amplitude. Implementation of multiple barriers, can result in complete suppress the transmission of incident acoustic signals as great as 70 dB. Additionally, shaping the laser beam acoustic waveguides can be generated with dramatically reduced transmission losses.

2.
Appl Spectrosc ; 76(11): 1346-1355, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35684985

RESUMO

Thermally induced optical reflection of sound (THORS) provides a means to manipulate sound waves without the need for traditional acoustically engineered structures. By photothermally exciting a medium, with infrared light, a barrier can be formed due to abrupt changes in compressibility of the excited medium. Discovery and initial characterization of the THORS phenomenon utilized air saturated with ethanol vapor as the absorbing medium and a CO2 laser, operating at 9.6 µm, as the excitation source to achieve acoustic reflection efficiencies of 25-30% of the incident wave. In this work, we demonstrate for the first time, the ability to generate THORS barriers in ambient air (i.e., without the need for ethanol vapor). Employing atmospheric water vapor as the absorbing medium and a modulated, multiline carbon monoxide laser, operating at 5.5 ± 0.25 µm, THORS barriers capable of acoustic and ultrasonic reflection-suppression efficiencies greater than 70% are readily generated. To achieve these significant reflection-suppression efficiencies, the temporal dynamics of THORS barriers in ambient air were characterized using 300 kHz ultrasonic pulses incident on the barriers, revealing three different operational regimes. In the first regime, a single laser pulse generates a transient THORS barrier that lasts tens of milliseconds and exhibits minimal acoustic reflectivity. In the second regime, multiple laser pulses interact with the water vapor prior to complete relaxation of the THORS barrier from the previous excitation pulse, resulting in an additive response and reflectivity/suppression efficiencies as great as 72%. Finally, in the third regime, non-modulated continuous wave (CW) excitation of the water vapor occurs resulting in no measurable acoustic reflectivity/suppression from the THORS barrier. This work characterizes these different regimes and the optimal modulation timing to generate efficient continuous acoustic barriers using THORS.

3.
Appl Spectrosc ; 75(10): 1320-1326, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709792

RESUMO

Using the recently discovered THermally induced Optical Reflection of Sound (THORS) phenomenon, it is possible to generate optically induced, local density barriers in air by the absorption of intense, modulated laser light (the THORS phenomenon), which results in abrupt differences in compressibility of the air at these barriers that can efficiently reflect incident acoustic waves. In this note, we demonstrate the ability to optically manipulate and reflect acoustic waves in air as well as optimize the functional parameters (optical modulation and acoustic frequency) and characterize the effects of common physical parameters, including localized thermal gradients and incident angle of reflection on the efficiency of the resulting acoustic reflection. Finally, the ability to efficiently steer acoustic waves around a physical obstruction using THORS is also demonstrated.

4.
Appl Spectrosc ; 71(2): 279-287, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27624554

RESUMO

Surface-enhanced Raman spectroscopy (SERS) sensors offer many advantages for chemical analyses, including the ability to provide chemical specific information and multiplexed detection capability at specific locations. However, to have operative SERS sensors for probing microenvironments, probes with high signal enhancement and reproducibility are necessary. To this end, dynamic enhancement of SERS (i.e., in-situ amplification of signal-to-noise and signal-to-background ratios) from individual probes has been explored. In this paper, we characterize the use of optical tweezers to amplify SERS signals as well as suppress background signals via trapping of individual SERS active probes. This amplification is achieved through a steady presence of a single "hot" particle in the focus of the excitation laser. In addition to increases in signal and concomitant decreases in non-SERS backgrounds, optical trapping results in an eightfold increase in the stability of the signal as well. This enhancement strategy was demonstrated using both single and multilayered SERS sub-micron probes, producing combined signal enhancements of 24-fold (beyond the native 106 SERS enhancement) for a three-layered geometry. The ability to dynamically control the enhancement offers the possibility to develop SERS-based sensors and probes with tailored sensitivities. In addition, since this trapping enhancement can be used to observe individual probes with low laser fluences, it could offer particular interest in probing the composition of microenvironments not amenable to tip-enhanced Raman spectroscopy or other scanning probe methods (e.g., intracellular analyses, etc.).

5.
Appl Spectrosc ; 60(12): 1377-85, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17217586

RESUMO

We have developed a novel class of gold multilayer, surface-enhanced Raman scattering (SERS) substrates that are capable of enhancing SERS signals by 15.3-fold over conventional gold film over nanostructure (GFON) SERS substrates, making them comparable in sensitivity to optimized silver film over nanostructure (SFON) substrates, while providing the long-term stability obtained from gold. They are fabricated by depositing 10 A thick silver oxide islands on conventional GFON substrates, followed by deposition of a second continuous gold layer. The silver oxide layer acts as a dielectric spacer between the two continuous gold films and produces significantly enhanced SERS signals, as compared to optimized single layer substrates of the same geometry or comparable substrates prepared by deposition of silver islands that are not oxidized. In addition to the enhanced sensitivity of these multilayer substrates, they also exhibit long SERS active shelf-lives (i.e., months), with no measurable degradation in SERS enhancement, and relative standard deviations in SERS enhancement of less than 5.2% across the substrate's surface.


Assuntos
Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Análise Espectral Raman/métodos , Materiais Revestidos Biocompatíveis/análise , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Propriedades de Superfície
6.
J Biomed Opt ; 21(4): 47001, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27086691

RESUMO

The development and demonstration of a multiphoton photoacoustic imaging technique capable of providing high spatial resolution chemical images of subsurface tissue components as deep as 1.4 cm below the tissue surface is described. By combining multiphoton excitation in the diagnostic window (650 to 1100 nm), with ultrasonic detection of nonradiative relaxation events, it is possible to rapidly reconstruct three-dimensional, chemical specific, images of samples underneath overlying structures as well as chemical species of the same material. Demonstration of this technique for subsurface tissue differentiation is shown, with the ability to distinguish between grade III astrocytoma tissue and adjacent healthy tissue in blind studies. By employing photoacoustic signal detection, the high nonradiative relaxation rates of most biological tissue components (>90% >90% ) and the minimal signal attenuation of the resulting ultrasound compensate for excitation efficiency losses associated with two-photon absorption. Furthermore, the two-photon absorption process results in a highly localized excitation volume (ca., 60 µm 60 µm ). Characterization of the probing depth, spatial resolution, and ability to image through overlying structures is also demonstrated in this paper using tissue phantoms with well-characterized optical scattering properties, mimicking those of tissues.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Humanos , Imagens de Fantasmas
7.
Appl Spectrosc ; 70(8): 1375-83, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27329834

RESUMO

This manuscript describes a simple process for fabricating gold-based, multi-layered, surface-enhanced Raman scattering (SERS) substrates that can be applied to a variety of different nanostructures, while still providing multi-layer enhancement factors comparable to those previously achieved only with optimized silver/silver oxide/silver substrates. In particular, gold multi-layered substrates generated by atomic layer deposition (ALD) have been fabricated and characterized in terms of their optimal performance, revealing multi-layer enhancements of 2.3-fold per spacer layer applied. These substrates were fabricated using TiO2 as the dielectric spacer material between adjacent gold layers, with ALD providing a conformal thin film with high surface coverage and low thickness. By varying the spacer layer thicknesses from sub-monolayer (non-contiguous) films through multiple TiO2 layer thick films, the non-monotonic spacer layer thickness response has been elucidated, revealing the importance of thin, contiguous dielectric spacer layers for optimal enhancement. Furthermore, the extended shelf life of these gold multi-layered substrates was characterized, demonstrating usable lifetimes (i.e. following storage in ambient conditions) of greater than five months, with the further potential for simple limited electrochemical regeneration even after this time.

8.
Appl Spectrosc ; 59(4): 410-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15901325

RESUMO

Novel dual layer and multilayer silver film over nanostructure (SFON) substrates have been developed that provide surface-enhanced Raman scattering (SERS) signal enhancements of greater than 1000% compared to conventional single layer SFON substrates. These substrates provide signal enhancement factors of 3.8 x 10(5) and greater for a variety of SERS active analytes. Substrate preparation is accomplished by vapor depositing a thick (approximately 100 nm) layer of silver on top of an underlying layer of alumina nanoparticles, followed by deposition of additional layers of silver with silver oxide layers between them. Unlike previous dual layer silver island based substrates that have been developed, these substrates do not rely on achieving an optimal morphology via deposition of silver. Instead, these substrates rely on the roughness being provided by the original under-layer, providing enhanced substrate homogeneity and more reproducible signals than either silver island substrates or colloidal substrates. In addition, the signal enhancement gives these substrates extended lifetimes compared to conventional single layer SFON substrates. Finally, this study also shows that geometric surface structure and surface roughness factors play little or no role in this enhancement process, allowing for this multilayer fabrication process to be applied to many different types of substrates achieving similar or even greater results.


Assuntos
Ácido Benzoico/análise , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/análise , Prata/química , Análise Espectral Raman/métodos , Membranas Artificiais , Nanoestruturas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Propriedades de Superfície
9.
Inorg Chem ; 36(6): 962-965, 1997 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11669656

RESUMO

The complex [Ru(phen)(2)dppz](2+) is not photoluminescent in water but does emit in nonaqueous solvents (alcohols, acetonitrile) and in the presence of hydrated polymers such as DNA. Here we examine the steady-state and time-resolved photoluminescence spectra of [Ru(phen)(2)dppz](2+) in a series of nonaqueous solvents. We find that solvent polarity, as defined by the E(T) scale, is the single most important parameter in predicting luminescence lifetime and intensity in nonaqueous systems. These results are compared to the data for DNA, and the sequence-dependent microenvironment of the complex bound to DNA also follows the trends observed herein. The addition of high concentrations of water to solutions of [Ru(phen)(2)dppz](2+) dissolved in nonaqueous solvents leads to decreases in emission intensity that follow the Perrin sphere of quenching model. The nonradiative rate constants for luminescence decay increase as the solvent polarity increases, while the radiative rate constants are relatively unaffected by the local environment.

10.
Appl Spectrosc ; 58(11): 1325-33, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15606938

RESUMO

This paper describes the development and validation of a novel noninvasive spectroscopic subsurface chemical detection technique, non-resonant multiphoton photoacoustic spectroscopy (NMPPAS). In this technique, non-resonant multiphoton excitation is used to provide subsurface excitation of chemical constituents in a sample followed by the subsequent detection of an acoustic signal using a piezoelectric transducer. Because NMPPAS relies on non-radiative relaxation of the absorbing species, it is capable of monitoring both fluorescent and non-fluorescent species. Moreover, since the majority of the energy imparted to most molecules upon the absorption of light is released through non-radiative pathways, sensitive measurements of even fluorescent molecules can be performed. In this paper, demonstration of proof-of-principle of this novel technique has been shown using test samples of common fluorescent dyes and biomarkers including rhodamine 6G, tryptophan, and NADH in solution and gelatin tissue phantoms. From these studies, it was found that detection limits of these chromophores are in the subnanomolar concentration regime. In addition, preliminary results on excised tumor and healthy tissue samples have demonstrated significant differences between the tumorous and non-tumorous tissues at 740 nm and 950 nm wavelengths. From this work, it was found that NMPPAS has a great deal of potential for subsurface chemical diagnostics in the field of biomedical research.


Assuntos
Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico , Análise Espectral/instrumentação , Análise Espectral/métodos , Feminino , Corantes Fluorescentes , Humanos , Luz , Imagens de Fantasmas , Rodaminas , Raios Ultravioleta
11.
Anal Chem ; 78(21): 7535-46, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17073424

RESUMO

This work describes the development and demonstration of a non-scanning chemical imaging probe, capable of obtaining surface-enhanced Raman scattering (SERS) images of samples with which it is in direct contact. The SERS imaging arrays (i.e., nanoprobes) are used in a signal collection mode to obtain images by measuring as many as 30 000 individual sub-diffraction-limited locations on a sample's surface simultaneously. These SERS probes are fabricated from coherent fiber-optic imaging bundles, allowing for the formation of a highly ordered roughened metal surface, capable of providing uniform SERS enhancement (<2.0% relative standard deviation) across the entire imaging surface. These optimized SERS nanoprobes have potential application to a wide range of research fields from materials science to cellular biology.


Assuntos
Nanotecnologia , Análise Espectral Raman/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa