Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Ecol ; 31(20): 5368-5385, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35960256

RESUMO

The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Filogenia , Simbiose/genética
2.
Mol Ecol ; 31(2): 588-602, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689363

RESUMO

Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat-stress. Yet, the mechanistic underpinnings and long-term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coral Montastraea cavernosa through controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genus Cladocopium) or the thermotolerant species (Durusdinium trenchi). Single-base genome-wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat-stressed corals hosting different symbionts (Cladocopium vs. D. trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Metilação de DNA , Dinoflagellida/genética , Estudo de Associação Genômica Ampla , Temperatura Alta , Simbiose/genética
3.
Glob Chang Biol ; 28(6): 2006-2025, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957651

RESUMO

Reef-building corals form nutritional symbioses with endosymbiotic dinoflagellates (Symbiodiniaceae), a relationship that facilitates the ecological success of coral reefs. These symbionts are mostly acquired anew each generation from the environment during early life stages ("horizontal transmission"). Symbiodiniaceae species exhibit trait variation that directly impacts the health and performance of the coral host under ocean warming. Here, we test the capacity for larvae of a horizontally transmitting coral, Acropora tenuis, to establish symbioses with Symbiodiniaceae species in four genera that have varying thermal thresholds (the common symbiont genera, Cladocopium and Durusdinium, and the less common Fugacium and Gerakladium). Over a 2-week period in January 2018, a series of both no-choice and four-way choice experiments were conducted at three temperatures (27, 30, and 31°C). Symbiont acquisition success and cell proliferation were measured in individual larvae. Larvae successfully acquired and maintained symbionts of all four genera in no-choice experiments, and >80% of larvae were infected with at least three genera when offered a four-way choice. Unexpectedly, Gerakladium symbionts increased in dominance over time, and at high temperatures outcompeted Durusdinium, which is regarded as thermally tolerant. Although Fugacium displayed the highest thermal tolerance in culture and reached similar cell densities to the other three symbionts at 31°C, it remained a background symbiont in choice experiments, suggesting host preference for other symbiont species. Larval survivorship at 1 week was highest in larvae associated with Gerakladium and Fugacium symbionts at 27 and 30°C, however at 31°C, mortality was similar for all treatments. We hypothesize that symbionts that are currently rare in corals (e.g., Gerakladium) may become more common and widespread in early life stages under climate warming. Uptake of such symbionts may function as a survival strategy in the wild, and has implications for reef restoration practices that use sexually produced coral stock.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Larva , Oceanos e Mares , Simbiose , Temperatura
4.
J Theor Biol ; 541: 111087, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35276225

RESUMO

Many corals form close associations with a diverse assortment of coral-dwelling fishes and other fauna. As coral reefs around the world are increasingly threatened by mass bleaching events, it is important to understand how these biotic interactions influence corals' susceptibility to bleaching. We used dynamic energy budget modeling to explore how nitrogen excreted by coral-dwelling fish affects the physiological performance of host corals. In our model, fish presence influenced the functioning of the coral-Symbiodiniaceae symbiosis by altering nitrogen availability, and the magnitude and sign of these effects depended on environmental conditions. Although our model predicted that fish-derived nitrogen can promote coral growth, the relationship between fish presence and coral tolerance of photo-oxidative stress was non-linear. Fish excretions supported denser symbiont populations that provided protection from incident light through self-shading. However, these symbionts also used more of their photosynthetic products for their own growth, rather than sharing with the coral host, putting the coral holobiont at a higher risk of becoming carbon-limited and bleaching. The balance between the benefits of increased symbiont shading and costs of reduced carbon sharing depended on environmental conditions. Thus, while there were some scenarios under which fish presence increased corals' tolerance of light stress, fish could also exacerbate bleaching and slow or prevent subsequent recovery. We discuss how the contrast between the potentially harmful effects of fish predicted by our model and results of empirical studies may relate to key model assumptions that warrant further investigation. Overall, this study provides a foundation for future work on how coral-associated fauna influence the bioenergetics of their host corals, which in turn has implications for how these corals respond to bleaching-inducing stressors.


Assuntos
Antozoários , Animais , Carbono , Recifes de Corais , Fertilização , Peixes , Nitrogênio , Simbiose/fisiologia
5.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34666521

RESUMO

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/fisiologia , Censos , Recifes de Corais , Florida
6.
Mol Ecol ; 29(15): 2940-2950, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585772

RESUMO

Some corals may become more resistant to bleaching by shuffling their Symbiodiniaceae communities toward thermally tolerant species, and manipulations to boost the abundance of these symbionts in corals may increase resilience in warming oceans. However, the thermotolerant symbiont Durusdinium trenchii may reduce growth and fecundity in Caribbean corals, and these tradeoffs need to be better understood as this symbiont spreads through the region. We sought to understand how D. trenchii modulates coral gene expression by manipulating symbiont communities in Montastraea cavernosa to produce replicate ramets containing D. trenchii together with paired ramets of these same genets (n = 3) containing Cladocopium C3 symbionts. We then examined differences in global gene expression between corals hosting Durusdinium and Cladocopium under control temperatures, and in response to short-term heat stress. We identified numerous transcriptional differences associated with symbiont identity, which explained 2%-14% of the transcriptional variance. Corals with D. trenchii upregulated genes related to translation, ribosomal structure and biogenesis, and downregulated genes related to extracellular structures, and carbohydrate and lipid transport and metabolism, relative to corals with Cladocopium. Unexpectedly, these changes were similar to those observed in Cladocopium-dominated corals in response to heat stress, suggesting that thermotolerant D. trenchii may cause corals to increase expression of heat stress-responsive genes, explaining both the increased heat tolerance and the associated energetic tradeoffs in corals containing D. trenchii. These findings provide insight into the ecological changes occurring on contemporary coral reefs in response to climate change, and the diverse ways in which different symbionts modulate emergent phenotypes of their hosts.


Assuntos
Antozoários , Dinoflagellida , Termotolerância , Animais , Antozoários/genética , Região do Caribe , Recifes de Corais , Dinoflagellida/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Oceanos e Mares , Simbiose/genética , Termotolerância/genética
7.
J Exp Biol ; 223(Pt 20)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087470

RESUMO

The absorbtion of human-emitted CO2 by the oceans (elevated PCO2 ) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated PCO2  on a coral-algal symbiosis (Pocillopora acuta-Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated PCO2  (962 versus 431 µatm PCO2 ) had an interactive effect with midday light availability (400 versus 800 µmol photons m-2 s-1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-PCO2  and high-light conditions. Light-enhanced dark respiration increased under elevated PCO2  and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated PCO2  to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the 'one-two punch' of rising temperatures in the presence of an acidifying ocean.


Assuntos
Antozoários , Animais , Dióxido de Carbono , Clorofila A , Recifes de Corais , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Água do Mar , Temperatura
8.
Glob Chang Biol ; 23(3): 1023-1035, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27561209

RESUMO

Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2 ) (400, 900, 1300 µatm). Mixed-effects models of calcification for each species were then used to project community-level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2 . In the business-as-usual CO2 emissions scenario, reefs with high abundances of these species had projected end-of-century declines in scleractinian calcification of >50% relative to present-day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end-of-century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10-100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.


Assuntos
Mudança Climática , Recifes de Corais , Animais , Antozoários , Região do Caribe , Florida , Dinâmica Populacional , Água do Mar
9.
J Exp Biol ; 220(Pt 7): 1192-1196, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108671

RESUMO

Reef corals are sensitive to thermal stress, which induces coral bleaching (the loss of algal symbionts), often leading to coral mortality. However, corals hosting certain symbionts (notably some members of Symbiodinium clade D) resist bleaching when exposed to high temperatures. To determine whether these symbionts are also cold tolerant, we exposed corals hosting either Symbiodinium C3 or D1a to incremental warming (+1°C week-1 to 35°C) and cooling (-1°C week-1 to 15°C), and measured photodamage and symbiont loss. During warming to 33°C, C3 corals were photodamaged and lost >99% of symbionts, while D1a corals experienced photodamage but did not bleach. During cooling, D1a corals suffered more photodamage than C3 corals but still did not bleach, while C3 corals lost 94% of symbionts. These results indicate that photodamage does not always lead to bleaching, suggesting alternate mechanisms exist by which symbionts resist bleaching, and helping explain the persistence of D1a symbionts on recently bleached reefs, with implications for the future of these ecosystems.


Assuntos
Aclimatação , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Dinoflagellida/fisiologia , Simbiose , Animais , Temperatura Baixa , Temperatura Alta , Estresse Fisiológico
10.
J Theor Biol ; 431: 49-62, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28782552

RESUMO

Coral reef ecosystems owe their ecological success - and vulnerability to climate change - to the symbiotic metabolism of corals and Symbiodinium spp. The urgency to understand and predict the stability and breakdown of these symbioses (i.e., coral 'bleaching') demands the development and application of theoretical tools. Here, we develop a dynamic bioenergetic model of coral-Symbiodinium symbioses that demonstrates realistic steady-state patterns in coral growth and symbiont abundance across gradients of light, nutrients, and feeding. Furthermore, by including a mechanistic treatment of photo-oxidative stress, the model displays dynamics of bleaching and recovery that can be explained as transitions between alternate stable states. These dynamics reveal that "healthy" and "bleached" states correspond broadly to nitrogen- and carbon-limitation in the system, with transitions between them occurring as integrated responses to multiple environmental factors. Indeed, a suite of complex emergent behaviors reproduced by the model (e.g., bleaching is exacerbated by nutrients and attenuated by feeding) suggests it captures many important attributes of the system; meanwhile, its modular framework and open source R code are designed to facilitate further problem-specific development. We see significant potential for this modeling framework to generate testable hypotheses and predict integrated, mechanistic responses of corals to environmental change, with important implications for understanding the performance and maintenance of symbiotic systems.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Modelos Biológicos , Simbiose/fisiologia , Algoritmos , Animais , Biomassa , Mudança Climática , Recifes de Corais , Metabolismo Energético , Estações do Ano
11.
J Phycol ; 52(6): 1114-1124, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27690269

RESUMO

For many coral species, the obligate association with phylogenetically diverse algal endosymbiont species is dynamic in time and space. Here, we used controlled laboratory inoculations of newly settled, aposymbiotic corals (Orbicella faveolata) with two cultured species of algal symbiont (Symbiodinium microadriaticum and S. minutum) to examine the role of symbiont identity on growth, survivorship, and thermal tolerance of the coral holobiont. We evaluated these data in the context of Symbiodinium photophysiology for 9 months post-settlement and also during a 5-d period of elevated temperatures Our data show that recruits that were inoculated with S. minutum grew significantly slower than those inoculated with S. microadriaticum (occasionally co-occurring with S. minutum), but that there was no difference in survivorship of O. faveolata polyps infected with Symbiodinium. However, photophysiological metrics (∆Fv/F'm, the efficiency with which available light is used to drive photosynthesis and α, the maximum light utilization coefficient) were higher in those slower growing recruits containing S. minutum. These findings suggest that light use (i.e., photophysiology) and carbon acquisition by the coral host (i.e., host growth) are decoupled, but did not distinguish the source of this difference. Neither Symbiodinium treatment demonstrated a significant negative effect of a 5-d exposure to temperatures as high as 32°C under low light conditions similar to those measured at settlement habitats.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Simbiose , Termotolerância , Animais , Antozoários/crescimento & desenvolvimento , Florida , Especificidade da Espécie
12.
Glob Chang Biol ; 21(1): 236-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25099991

RESUMO

Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.


Assuntos
Aclimatação/fisiologia , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Temperatura Alta , Simbiose , Análise de Variância , Animais , Clorofila/metabolismo , Primers do DNA/genética , Dinoflagellida/genética , Fluorometria , Reação em Cadeia da Polimerase
13.
PeerJ ; 12: e17358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827291

RESUMO

Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.


Assuntos
Antozoários , Recifes de Corais , Simbiose , Animais , Antozoários/microbiologia , Região do Caribe , Ilhas Virgens Americanas , Dinoflagellida/genética , Dinoflagellida/fisiologia
14.
Sci Adv ; 9(32): eadf0954, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566650

RESUMO

Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Dinoflagellida/genética , Genoma , Genótipo , Simbiose , Recifes de Corais
15.
Sci Total Environ ; 889: 164040, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209745

RESUMO

Historically, Hawai'i had few massive coral bleaching events, until two consecutive heatwaves in 2014-2015. Consequent mortality and thermal stress were observed in Kane'ohe Bay (O'ahu). The two most dominant local species exhibited a phenotypic dichotomy of either bleaching resistance or susceptibility (Montipora capitata and Porites compressa), while the third predominant species (Pocillopora acuta) was broadly susceptible to bleaching. In order to survey shifts in coral microbiomes during bleaching and recovery, 50 colonies were tagged and periodically monitored. Metabarcoding of three genetic markers (16S rRNA gene ITS1 and ITS2) followed by compositional approaches for community structure analysis, differential abundance and correlations for longitudinal data were used to temporally compare Bacteria/Archaea, Fungi and Symbiodiniaceae dynamics. P. compressa corals recovered faster than P. acuta and Montipora capitata. Prokaryotic and algal communities were majorly shaped by host species, and had no apparent pattern of temporal acclimatization. Symbiodiniaceae signatures were identified at the colony scale, and were often related to bleaching susceptibility. Bacterial compositions were practically constant between bleaching phenotypes, and more diverse in P. acuta and M. capitata. P. compressa's prokaryotic community was dominated by a single bacterium. Compositional approaches (via microbial balances) allowed the identification of fine-scale differences in the abundance of a consortium of microbes, driving changes by bleaching susceptibility and time across all hosts. The three major coral reef founder-species in Kane'ohe Bay revealed different phenotypic and microbiome responses after 2014-2015 heatwaves. It is difficult to forecast, a more successful strategy towards future scenarios of global warming. Differentially abundant microbial taxa across time and/or bleaching susceptibility were broadly shared among all hosts, suggesting that locally, the same microbes may modulate stress responses in sympatric coral species. Our study highlights the potential of investigating microbial balances to identify fine-scale microbiome changes, serving as local diagnostic tools of coral reef fitness.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Havaí , Consórcios Microbianos , Especificidade de Hospedeiro , RNA Ribossômico 16S/genética , Bactérias/genética
16.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
17.
Emerg Top Life Sci ; 6(1): 11-15, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34881775

RESUMO

Some reef-building corals form symbioses with multiple algal partners that differ in ecologically important traits like heat tolerance. Coral bleaching and recovery can drive symbiont community turnover toward more heat-tolerant partners, and this 'adaptive bleaching' response can increase future bleaching thresholds by 1-2°C, aiding survival in warming oceans. However, this mechanism of rapid acclimatization only occurs in corals that are compatible with multiple symbionts, and only when the disturbance regime and competitive dynamics among symbionts are sufficient to bring about community turnover. The full scope of coral taxa and ecological scenarios in which symbiont shuffling occurs remains poorly understood, though its prevalence is likely to increase as warming oceans boost the competitive advantage of heat-tolerant symbionts, increase the frequency of bleaching events, and strengthen metacommunity feedbacks. Still, the constraints, limitations, and potential tradeoffs of symbiont shuffling suggest it will not save coral reef ecosystems; however, it may significantly improve the survival trajectories of some, or perhaps many, coral species. Interventions to manipulate coral symbionts and symbiont communities may expand the scope of their adaptive potential, which may boost coral survival until climate change is addressed.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema , Simbiose
18.
Conserv Physiol ; 10(1): coac066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247693

RESUMO

Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals' survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions. Some corals have been found to associate with multiple symbiont species simultaneously, which potentially gives them access to the benefits of both stress-sensitive and -tolerant symbionts. However, within-host competition between symbionts may lead to competitive exclusion of one partner, and the consequences of associating with multiple partners simultaneously are not well understood. We modify a mechanistic model of coral-algal symbiosis to investigate the effect of environmental conditions on within-host competitive dynamics between stress-sensitive and -tolerant symbionts and the effect of access to a tolerant symbiont on the dynamics of recovery from bleaching. We found that the addition of a tolerant symbiont can increase host survival and recovery from bleaching in high-light conditions. Competitive exclusion of the tolerant symbiont occurred slowly at intermediate light levels. Interestingly, there were some cases of post-bleaching competitive exclusion after the tolerant symbiont had helped the host recover.

19.
Conserv Physiol ; 10(1): coac026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35539007

RESUMO

Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One natural simplification is to assume that some metabolic processes act on 'fast' timescales relative to others. A common strategy for formulating such models is to assume that 'fast' processes equilibrate immediately, while 'slow' processes are described by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model dynamics? This situation can easily arise in contexts where an organism or community can persist in a 'healthy' or an 'unhealthy' state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method to unambiguously complete implicitly defined models by adding hypothetical 'fast' state variables; (b) an approach for minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics, e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between corals and endosymbiotic algae that describes coral bleaching and recovery.

20.
Nat Commun ; 11(1): 6097, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293528

RESUMO

Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Simbiose/fisiologia , Termotolerância/fisiologia , Clima Tropical/efeitos adversos , Animais , Antozoários/microbiologia , Recifes de Corais , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa