Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Emerg Infect Dis ; 30(6): 1240-1244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782018

RESUMO

A 2022 canine gastroenteritis outbreak in the United Kingdom was associated with circulation of a new canine enteric coronavirus closely related to a 2020 variant with an additional spike gene recombination. The variants are unrelated to canine enteric coronavirus-like viruses associated with human disease but represent a model for coronavirus population adaptation.


Assuntos
Infecções por Coronavirus , Surtos de Doenças , Doenças do Cão , Gastroenterite , Filogenia , Animais , Cães , Surtos de Doenças/veterinária , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Reino Unido/epidemiologia , Gastroenterite/virologia , Gastroenterite/epidemiologia , Gastroenterite/veterinária , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Canino/genética , Coronavirus Canino/classificação , Humanos , Glicoproteína da Espícula de Coronavírus/genética
2.
BMC Microbiol ; 23(1): 354, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980461

RESUMO

The immunogenicity and effectiveness of oral rotavirus vaccines (ORVs) against severe rotavirus-associated gastroenteritis are impaired in low- and middle-income countries (LMICs) where the burden of disease is highest. Determining risk factors for impaired ORV response may help identify strategies to enhance vaccine effectiveness. In this study, we use metagenomic sequencing to provide a high-resolution taxonomic analysis of stool samples collected at 6 weeks of age (coinciding with the first ORV dose) during a prospective study of ORV immunogenicity in India and Malawi. We then analyse the functional capacity of the developing microbiome in these cohorts. Microbiome composition differed significantly between countries, although functional capacity was more similar than taxonomic composition. Our results confirm previously reported findings that the developing microbiome is more diverse in taxonomic composition in ORV non-seroconverters compared with seroconverters, and we additionally demonstrate a similar pattern in functional capacity. Although taxonomic or functional feature abundances are poor predictors of ORV response, we show that skews in the direction of associations within these microbiome data can be used to identify consistent markers of ORV response across LMIC infant cohorts. We also highlight the systemic under-representation of reference genes from LMICs that limit functional annotation in our study (7% and 13% annotation at pathway and enzyme commission level, respectively). Overall, higher microbiome diversity in early life may act as marker for impaired ORV response in India and Malawi, whilst a holistic perspective of functional capacity may be hidden in the "dark matter" of the microbiome.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Lactente , Rotavirus/genética , Malaui , Estudos Prospectivos , Imunogenicidade da Vacina , Infecções por Rotavirus/prevenção & controle , Índia , Vacinas Atenuadas , Anticorpos Antivirais
3.
Sci Rep ; 13(1): 13617, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604855

RESUMO

Escin is a mixture of over 30 glycosylated triterpenoid (saponin) structures, extracted from the dried fruit of horse chestnuts. Escin is currently used as an anti-inflammatory, and has potential applications in the treatment of arthritis and cancer. Engineered yeast would enable production of specific bioactive components of escin at industrial scale, however many saponins have been shown to be toxic to yeast. Here we report that a Saccharomyces cerevisiae strain specifically lacking the sterol C-5 desaturase gene ERG3, exhibits striking enhanced tolerance to escin treatment. Transcriptome analyses, as well as pre-mixing of escin with sterols, support the hypothesis that escin interacts directly with ergosterol, but not as strongly with the altered sterols present in erg3Δ. A diverse range of saponins are of commercial interest, and this research highlights the value of screening lipidome mutants to identify appropriate hosts for engineering the industrial production of saponins.


Assuntos
Saccharomyces cerevisiae , Saponinas , Saccharomyces cerevisiae/genética , Escina , Saponinas/farmacologia , Esteróis/farmacologia , Anti-Inflamatórios , Ácidos Graxos Dessaturases
4.
Lancet Microbe ; 4(12): e1063-e1070, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977163

RESUMO

Whole-genome sequencing of antimicrobial-resistant pathogens is increasingly being used for antimicrobial resistance (AMR) surveillance, particularly in high-income countries. Innovations in genome sequencing and analysis technologies promise to revolutionise AMR surveillance and epidemiology; however, routine adoption of these technologies is challenging, particularly in low-income and middle-income countries. As part of a wider series of workshops and online consultations, a group of experts in AMR pathogen genomics and computational tool development conducted a situational analysis, identifying the following under-used innovations in genomic AMR surveillance: clinical metagenomics, environmental metagenomics, gene or plasmid tracking, and machine learning. The group recommended developing cost-effective use cases for each approach and mapping data outputs to clinical outcomes of interest to justify additional investment in capacity, training, and staff required to implement these technologies. Harmonisation and standardisation of methods, and the creation of equitable data sharing and governance frameworks, will facilitate successful implementation of these innovations.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica/métodos , Genoma , Sequenciamento Completo do Genoma/métodos
5.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098917

RESUMO

The eighth Applied Bioinformatics and Public Health Microbiology (ABPHM) conference showcased the recent acceleration of bioinformatic approaches used in public health settings. This included approaches for the surveillance of infectious diseases, understanding microbial evolution and diversity and pathogen interactions. Overall, the meeting highlighted the importance of data-driven approaches used by scientists during the COVID-19 pandemic.


Assuntos
Infecções Bacterianas/epidemiologia , COVID-19/epidemiologia , Biologia Computacional/métodos , Técnicas Microbiológicas/métodos , Saúde Pública/métodos , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , COVID-19/prevenção & controle , COVID-19/virologia , Humanos
6.
Microb Genom ; 8(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748522

RESUMO

The home and personal care (HPC) industry generally relies on initial cultivation and subsequent biochemical testing for the identification of microorganisms in contaminated products. This process is slow (several days for growth), labour intensive, and misses organisms which fail to revive from the harsh environment of preserved consumer products. Since manufacturing within the HPC industry is high-throughput, the process of identification of microbial contamination could benefit from the multiple cultivation-independent methodologies that have developed for the detection and analysis of microbes. We describe a novel workflow starting with automated DNA extraction directly from a HPC product, and subsequently applying metagenomic methodologies for species and strain-level identification of bacteria. The workflow was validated by application to a historic microbial contamination of a general-purpose cleaner (GPC). A single strain of Pseudomonas oleovorans was detected metagenomically within the product. The metagenome mirrored that of a contaminant isolated in parallel by a traditional cultivation-based approach. Using a dilution series of the incident sample, we also provide evidence to show that the workflow enables detection of contaminant organisms down to 100 CFU/ml of product. To our knowledge, this is the first validated example of metagenomics analysis providing confirmatory evidence of a traditionally isolated contaminant organism, in a HPC product.


Assuntos
Bactérias , Metagenoma , Estudos Retrospectivos , Bactérias/genética , Metagenômica/métodos , Fluxo de Trabalho
7.
Microb Genom ; 7(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891536

RESUMO

The Burkholderia cepacia complex (Bcc) is a closely related group of bacteria, composed of at least 20 different species, the accurate identification of which is essential in the context of infectious diseases. In industry, they can contaminate non-food products, including home and personal care products and cosmetics. The Bcc are problematic contaminants due to their ubiquitous presence and intrinsic antimicrobial resistance, which enables them to occasionally overcome preservation systems in non-sterile products. Burkholderia lata and Burkholderia contaminans are amongst the Bcc bacteria encountered most frequently as industrial contaminants, but their identification is not straightforward. Both species were historically established as a part of a group known collectively as taxon K, based upon analysis of the recA gene and multilocus sequence typing (MLST). Here, we deploy a straightforward genomics-based workflow for accurate Bcc classification using average nucleotide identity (ANI) and core-gene analysis. The workflow was used to examine a panel of 23 Burkholderia taxon K industrial strains, which, based on MLST, comprised 13 B. lata, 4 B. contaminans and 6 unclassified Bcc strains. Our genomic identification showed that the B. contaminans strains retained their classification, whilst the remaining strains were reclassified as Burkholderia aenigmatica sp. nov. Incorrect taxonomic identification of industrial contaminants is a problematic issue. Application and testing of our genomic workflow allowed the correct classification of 23 Bcc industrial strains, and also indicated that B. aenigmatica sp. nov. may have greater importance than B. lata as a contaminant species. Our study illustrates how the non-food manufacturing industry can harness whole-genome sequencing to better understand antimicrobial-resistant bacteria affecting their products.


Assuntos
Burkholderia/isolamento & purificação , Genoma Bacteriano , Microbiologia Industrial , Burkholderia/classificação , Burkholderia/genética , Genômica , Tipagem de Sequências Multilocus , Filogenia
8.
Microbiol Resour Announc ; 9(9)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107303

RESUMO

In order to expand the limited understanding of the genomics of antimicrobial-resistant industrial bacteria, we report the genome sequence of Pluralibacter gergoviae ECO77, a historical contaminant strain of industrial origin. The multireplicon 6.16-Mbp genome of ECO77 consists of a 5.37-Mbp main chromosome, a megaplasmid (605,666 bp), and a large plasmid (182,007 bp).

9.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710748

RESUMO

Bacterial endophytes are found in the internal tissues of plants and have intimate associations with their host. However, little is known about the diversity of medicinal plant endophytes (ME) or their capability to produce specialised metabolites that may contribute to therapeutic properties. We isolated 75 bacterial ME from 24 plant species of the Western Ghats, India. Molecular identification by 16S rRNA gene sequencing grouped MEs into 13 bacterial genera, with members of Gammaproteobacteria and Firmicutes being the most abundant. To improve taxonomic identification, 26 selected MEs were genome sequenced and average nucleotide identity (ANI) used to identify them to the species-level. This identified multiple species in the most common genus as Bacillus. Similarly, identity of the Enterobacterales was also distinguished within Enterobacter and Serratia by ANI and core-gene analysis. AntiSMASH identified non-ribosomal peptide synthase, lantipeptide and bacteriocin biosynthetic gene clusters (BGC) as the most common BGCs found in the ME genomes. A total of five of the ME isolates belonging to Bacillus, Serratia and Enterobacter showed antimicrobial activity against the plant pathogen Pectobacterium carotovorum. Using molecular and genomic approaches we have characterised a unique collection of endophytic bacteria from medicinal plants. Their genomes encode multiple specialised metabolite gene clusters and the collection can now be screened for novel bioactive and medicinal metabolites.


Assuntos
Endófitos , Plantas Medicinais , Bactérias/genética , Endófitos/genética , Índia , Filogenia , RNA Ribossômico 16S/genética
10.
FEMS Microbiol Lett ; 366(23)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977006

RESUMO

Preventing microbial contamination of non-food products is a major area of industrial microbiology where preservatives are used to stop microbial growth. However, microorganisms occasionally overcome product preservation, causing recalls and the implementation of multiple procedures to prevent further contamination. Correct reporting of microbial contamination in non-food industrial products is vital, especially if spoilage organisms are antimicrobial resistant and pose a health threat. Gram-negative bacteria such as Pseudomonas, Burkholderia and Enterobacteriaceae are frequently reported as non-food product contaminants, including species that overlap current antimicrobial resistance priorities. Historical analysis of recall databases highlighted that for greater than 15% of contamination incidents, the causative microbial agents are reported as unidentified. Here we review the current antimicrobial resistant bacterial species associated with non-food product contamination and evaluate recall reporting in Europe from 2005 to 2018. Our review shows that 49% of microbial contaminants are reported as unidentified despite frequent detection of antimicrobial resistant pathogens; in contrast, 98% of food-related microbial contaminants are classified. Recommendations to fill this microbial identification gap in non-food product recalls are made. Overall, reporting standards for microbial contamination in non-food products must be improved to enable surveillance and for understanding the risks associated with antimicrobial resistant microorganisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Contaminação de Equipamentos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana
11.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048384

RESUMO

The genomes of two Methanococcoides spp. that were isolated from marine sediments and are capable of carrying out methanogenesis from choline and other methylotrophic substrates were sequenced. The average nucleotide identity and in silico DNA-DNA hybridization analyses demonstrate that they represent species different from those previously described.

12.
Microbiol Resour Announc ; 8(34)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439701

RESUMO

Three strains of fungus-associated Burkholderiales bacteria with antagonistic activity against Gram-negative plant pathogens were genome sequenced to investigate their taxonomic placement and potential for antimicrobial specialized metabolite production. The selected strains were identified as novel taxa belonging to the genus Paraburkholderia and carry multiple biosynthetic gene clusters.

13.
Microb Genom ; 5(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170060

RESUMO

Pseudomonas aeruginosa is a highly versatile, antibiotic-resistant Gram-negative bacterium known for causing opportunistic infections and contamination of industrial products. Despite extensive genomic analysis of clinical P. aeruginosa strains, no genomes exist for preservative-tolerant industrial strains. A unique collection of 69 industrial isolates was assembled and compared to clinical and environmental strains; 16 genetically distinct industrial strains were subjected to array tube genotyping, multilocus sequence typing and whole-genome sequencing. The industrial strains possessed high preservative tolerance and were dispersed widely across P. aeruginosa as a species, but recurrence of strains from the same lineage within specific industrial products and locations was identified. The industrial P. aeruginosa genomes (mean=7.0 Mb) were significantly larger than those of previously sequenced environmental (mean=6.5 Mb; n=19) and clinical (mean=6.6 Mb; n=66) strains. Complete sequencing of the P. aeruginosa industrial strain RW109, which encoded the largest genome (7.75 Mb), revealed a multireplicon structure including a megaplasmid (555 265 bp) and large plasmid (151 612 bp). The RW109 megaplasmid represented an emerging plasmid family conserved in seven industrial and two clinical P. aeruginosa strains, and associated with extremely stress-resilient phenotypes, including antimicrobial resistance and solvent tolerance. Here, by defining the detailed phylogenomics of P. aeruginosa industrial strains, we show that they uniquely possess multireplicon, megaplasmid-bearing genomes, and significantly greater genomic content worthy of further study.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , DNA Bacteriano/genética , Humanos , Microbiologia Industrial , Filogenia , Replicon , Sequenciamento Completo do Genoma
14.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579234

RESUMO

Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline.


Assuntos
Doenças dos Peixes/microbiologia , Genômica/métodos , Infecções por Pseudomonas/veterinária , Pseudomonas/genética , Análise de Sequência de DNA/métodos , Animais , Genoma Bacteriano , Genômica/instrumentação , Nanoporos , Fenótipo , Filogenia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Semicondutores , Análise de Sequência de DNA/instrumentação
15.
Nat Microbiol ; 7(12): 1947-1948, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36443459
16.
Front Microbiol ; 6: 1195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579101

RESUMO

Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa