Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Microbiol ; 112(3): 785-799, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136034

RESUMO

One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid-cell zone for division. The universality of pattern-forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time-lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea.


Assuntos
Divisão Celular , Haloferax volcanii/citologia , Haloferax volcanii/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Forma Celular , Haloferax/citologia , Haloferax/genética , Haloferax/metabolismo , Haloferax volcanii/genética
2.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018575

RESUMO

The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell-cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurofibromina 2/metabolismo , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/química , Inibição de Contato , Proteínas do Citoesqueleto/química , Humanos , Proteínas de Membrana/química , Proteínas dos Microfilamentos/química , Modelos Moleculares , Neurofibromina 2/química , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Alinhamento de Sequência
3.
Biochem J ; 473(18): 2763-82, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27364155

RESUMO

Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.


Assuntos
Proteínas do Citoesqueleto/química , Dicroísmo Circular , Cristalografia por Raios X , Dimerização , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 111(26): E2666-75, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979784

RESUMO

Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species. Each PBP is a dimer of αß subunits in which the structure of the αß monomer is conserved. However, we discovered two dramatically distinct quaternary conformations, one of which is specific to the genus Hemiselmis. Because of steric effects emerging from the insertion of a single amino acid, the two αß monomers are rotated by ∼73° to an "open" configuration in contrast to the "closed" configuration of other cryptophyte PBPs. This structural change is significant for the light-harvesting function because it disrupts the strong excitonic coupling between two central chromophores in the closed form. The 2D ES show marked cross-peak oscillations assigned to electronic and vibrational coherences in the closed-form PC645. However, such features appear to be reduced, or perhaps absent, in the open structures. Thus cryptophytes have evolved a structural switch controlled by an amino acid insertion to modulate excitonic interactions and therefore the mechanisms used for light harvesting.


Assuntos
Criptófitas/genética , Evolução Molecular , Modelos Moleculares , Mutagênese Insercional/genética , Ficobiliproteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Dimerização , Dados de Sequência Molecular , Ficobiliproteínas/química , Conformação Proteica , Análise de Sequência de DNA , Análise Espectral
5.
Angew Chem Int Ed Engl ; 56(29): 8384-8388, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28128487

RESUMO

The fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure. Our results demonstrate a cooperative, self-chaperone refolding mechanism, whereby the ß-subunits independently refold, thereby templating the folding of the α-subunits, which then chaperone the assembly of the native complex, quantitatively returning all coherences. Our results indicate that subunit self-chaperoning is a robust mechanism for heteromeric protein folding and assembly that could also be applied in self-assembled synthetic hierarchical systems.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Chaperonas Moleculares/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Redobramento de Proteína
6.
Biochemistry ; 55(27): 3825-33, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27299171

RESUMO

Chloride intracellular channel protein 1 (CLIC1) is very unusual as it adopts a soluble glutathione S-transferase-like canonical fold but can also autoinsert into lipid bilayers to form an ion channel. The conversion between these forms involves a large, but reversible, structural rearrangement of the CLIC1 module. The only identified environmental triggers controlling the metamorphic transition of CLIC1 are pH and oxidation. Until now, there have been no high-resolution structural data available for the CLIC1 integral membrane state, and consequently, a limited understanding of how CLIC1 unfolds and refolds across the bilayer to form a membrane protein with ion channel activity exists. Here we show that fluorescence spectroscopy can be used to establish the interaction and position of CLIC1 in a lipid bilayer. Our method employs a fluorescence energy transfer (FRET) approach between CLIC1 and a dansyl-labeled lipid analogue to probe the CLIC1-lipid interface. Under oxidizing conditions, a strong FRET signal between the single tryptophan residue of CLIC1 (Trp35) and the dansyl-lipid analogue was detected. When considering the proportion of CLIC1 interacting with the lipid bilayer, as estimated by fluorescence quenching experiments, the FRET distance between Trp35 and the dansyl moiety on the membrane surface was determined to be ∼15 Å. This FRET-detected interaction provides direct structural evidence that CLIC1 associates with membranes. The results presented support the current model of an oxidation-driven interaction of CLIC1 with lipid bilayers and also propose a membrane anchoring role for Trp35.


Assuntos
Membrana Celular/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Espectrometria de Fluorescência
7.
Nature ; 463(7281): 644-7, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20130647

RESUMO

Photosynthesis makes use of sunlight to convert carbon dioxide into useful biomass and is vital for life on Earth. Crucial components for the photosynthetic process are antenna proteins, which absorb light and transmit the resultant excitation energy between molecules to a reaction centre. The efficiency of these electronic energy transfers has inspired much work on antenna proteins isolated from photosynthetic organisms to uncover the basic mechanisms at play. Intriguingly, recent work has documented that light-absorbing molecules in some photosynthetic proteins capture and transfer energy according to quantum-mechanical probability laws instead of classical laws at temperatures up to 180 K. This contrasts with the long-held view that long-range quantum coherence between molecules cannot be sustained in complex biological systems, even at low temperatures. Here we present two-dimensional photon echo spectroscopy measurements on two evolutionarily related light-harvesting proteins isolated from marine cryptophyte algae, which reveal exceptionally long-lasting excitation oscillations with distinct correlations and anti-correlations even at ambient temperature. These observations provide compelling evidence for quantum-coherent sharing of electronic excitation across the 5-nm-wide proteins under biologically relevant conditions, suggesting that distant molecules within the photosynthetic proteins are 'wired' together by quantum coherence for more efficient light-harvesting in cryptophyte marine algae.


Assuntos
Criptófitas/metabolismo , Criptófitas/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Temperatura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Fótons , Fotossíntese/fisiologia , Conformação Proteica , Teoria Quântica
8.
Biochim Biophys Acta ; 1838(2): 643-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23732235

RESUMO

The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Humanos
9.
Angew Chem Int Ed Engl ; 54(18): 5317-22, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25736460

RESUMO

Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein-polymer bioconjugate PNIPAM-b-amilFP497 composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and a green-fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co-)encapsulate the fluorescent drug doxorubicin and the fluorescent light-harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM-FRET), we can distinguish the co-encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Portadores de Fármacos/síntese química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/síntese química , Ficoeritrina/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/química , Microscopia Confocal , Microscopia de Fluorescência , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície , Temperatura
10.
J Cell Sci ; 125(Pt 22): 5479-88, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22956539

RESUMO

Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1(-/-) mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1(-/-) macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1(-/-) mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.


Assuntos
Ácidos/metabolismo , Canais de Cloreto/metabolismo , Macrófagos Peritoneais/metabolismo , Fagossomos/metabolismo , Animais , Artrite/metabolismo , Artrite/patologia , Proteínas do Citoesqueleto/metabolismo , Glicolatos/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , NADPH Oxidases/metabolismo , Fagossomos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
11.
Biomacromolecules ; 15(11): 4065-72, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25233124

RESUMO

Directed assembly of biocompatible materials benefits from modular building blocks in which structural organization is independent of introduced functional modifications. For soft materials, such modifications have been limited. Here, long DNA is successfully functionalized with dense decoration by peptides. Following introduction of alkyne-modified nucleotides into kilobasepair DNA, measurements of persistence length show that DNA mechanics are unaltered by the dense incorporation of alkynes (∼1 alkyne/2 bp) and after click-chemistry attachment of a tunable density of peptides. Proteolytic cleavage of densely tethered peptides (∼1 peptide/3 bp) demonstrates addressability of the functional groups, showing that this accessible approach to creating hybrid structures can maintain orthogonality between backbone mechanics and overlaid function. The synthesis and characterization of these hybrid constructs establishes the groundwork for their implementation in future applications, such as building blocks in modular approaches to a range of problems in synthetic biology.


Assuntos
DNA/síntese química , Fragmentos de Peptídeos/síntese química , Pareamento de Bases , Química Click/métodos
12.
iScience ; 27(3): 109264, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450155

RESUMO

The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.

13.
Nat Commun ; 15(1): 1511, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396042

RESUMO

Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.


Assuntos
Proteínas Motores Moleculares , Nanotecnologia , Movimento (Física) , Proteínas Motores Moleculares/química , Peptídeos
14.
Protein Sci ; 32(3): e4586, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721353

RESUMO

In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αß protomer where the α and ß subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the ß subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families. It is still unclear how this sequence diversity results in the spectral diversity of the mature proteins. By careful examination of three newly determined crystal structures in comparison with three previously obtained, we show how the α subunit amino acid sequences control chromophore conformations and hence spectral properties even when the chromophores are identical. Previously we have shown that α subunits control the quaternary structure of the mature αß.αß complex (either open or closed), however, each species appeared to only harbor a single quaternary form. Here we show that species of the Hemiselmis genus contain expressed α subunit genes that encode both distinct quaternary structures. Finally, we have discovered a common single-copy gene (expressed into protein) consisting of tandem copies of a small α subunit that could potentially scaffold pairs of light harvesting units. Together, our results show how the diversity of the multigene α subunit family produces a range of mature cryptophyte antenna proteins with differing spectral properties, and the potential for minor forms that could contribute to acclimation to varying light regimes.


Assuntos
Criptófitas , Estrutura Molecular , Clorofila A/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Criptófitas/metabolismo
15.
Commun Biol ; 6(1): 1158, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957226

RESUMO

Cryptophyte algae have a unique phycobiliprotein light-harvesting antenna that fills a spectral gap in chlorophyll absorption from photosystems. However, it is unclear how the antenna transfers energy efficiently to these photosystems. We show that the cryptophyte Hemiselmis andersenii expresses an energetically complex antenna comprising three distinct spectrotypes of phycobiliprotein, each composed of two αß protomers but with different quaternary structures arising from a diverse α subunit family. We report crystal structures of the major phycobiliprotein from each spectrotype. Two-thirds of the antenna consists of open quaternary form phycobiliproteins acting as primary photon acceptors. These are supplemented by a newly discovered open-braced form (~15%), where an insertion in the α subunit produces ~10 nm absorbance red-shift. The final components (~15%) are closed forms with a long wavelength spectral feature due to substitution of a single chromophore. This chromophore is present on only one ß subunit where asymmetry is dictated by the corresponding α subunit. This chromophore creates spectral overlap with chlorophyll, thus bridging the energetic gap between the phycobiliprotein antenna and the photosystems. We propose that the macromolecular organization of the cryptophyte antenna consists of bulk open and open-braced forms that transfer excitations to photosystems via this bridging closed form phycobiliprotein.


Assuntos
Criptófitas , Fotossíntese , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Clorofila
16.
J Am Chem Soc ; 134(37): 15457-67, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22917063

RESUMO

The design of bioinspired nanostructures and materials of defined size and shape is challenging as it pushes our understanding of biomolecular assembly to its limits. In such endeavors, DNA is the current building block of choice because of its predictable and programmable self-assembly. The use of peptide- and protein-based systems, however, has potential advantages due to their more-varied chemistries, structures and functions, and the prospects for recombinant production through gene synthesis and expression. Here, we present the design and characterization of two complementary peptides programmed to form a parallel heterodimeric coiled coil, which we use as the building blocks for larger, supramolecular assemblies. To achieve the latter, the two peptides are joined via peptidic linkers of variable lengths to produce a range of assemblies, from flexible fibers of indefinite length, through large colloidal-scale assemblies, down to closed and discrete nanoscale objects of defined stoichiometry. We posit that the different modes of assembly reflect the interplay between steric constraints imposed by short linkers and the bulk of the helices, and entropic factors that favor the formation of many smaller objects as the linker length is increased. This approach, and the resulting linear and proteinogenic polypeptides, represents a new route for constructing complex peptide-based assemblies and biomaterials.


Assuntos
Nanoestruturas , Peptídeos/química , Sequência de Aminoácidos , Cromatografia em Gel , Dimerização , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Ultracentrifugação
17.
Phys Chem Chem Phys ; 14(14): 4857-74, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22374579

RESUMO

Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Luz , Fotossíntese , Teoria Quântica , Criptófitas/metabolismo , Concentração de Íons de Hidrogênio , Complexos de Proteínas Captadores de Luz/metabolismo , Razão Sinal-Ruído , Análise Espectral
18.
Biophys J ; 101(4): 1004-13, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21843493

RESUMO

We report a detailed description of the energy migration dynamics in the phycocyanin 645 (PC645) antenna complex from the photosynthetic alga Chroomonas CCMP270. Many of the cryptophyceae are known to populate greater depths than most other algal families, having developed a 99.5% efficient light-harvesting system. In this study, we used femtosecond time-resolved spectroscopy and global analysis to characterize the excited-state dynamics of PC645. Several different pump colors were selected to excite different fractions of the four phycobiliprotein pairs present in the complex. Measurements were also performed at cryogenic temperature to enhance spectral resolution and selectively promote downhill energy transfers. Upon excitation of the highest-energy bilins (dihydrobiliverdins), energy is transferred from the core of the complex to the periphery within 0.82 ps. Four bilins (mesobiliverdin (MBV) A/B and phycocyanobilins (PCB) 158C/D), which are responsible for the central band of the absorption spectrum, show concerted spectral dynamics. These chromophores show a biphasic decay with lifetimes of 0.6 ps (MBV) and 5-7 ps (PCB 158) to the lowest bilin pair (PCB 82C/D) absorbing around 650-657 nm. Within this lifetime of several picoseconds, the excitations reach the PCB 82 bilins on the two poles at the smaller sides of PC645. A slow 44-46 ps energy transfer step to the lowest-energy PCB 82 bilin concludes the dynamics.


Assuntos
Criptófitas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Ficocianina/metabolismo , Absorção , Cinética , Análise Espectral , Temperatura
19.
Biochemistry ; 50(50): 10887-97, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22082111

RESUMO

Chloride intracellular channel proteins (CLICs) differ from most ion channels as they can exist in both soluble and integral membrane forms. The CLICs are expressed as soluble proteins but can reversibly autoinsert into the membrane to form active ion channels. For CLIC1, the interaction with the lipid bilayer is enhanced under oxidative conditions. At present, little evidence is available characterizing the structure of the putative oligomeric CLIC integral membrane form. Previously, fluorescence resonance energy transfer (FRET) was used to monitor and model the conformational transition within CLIC1 as it interacts with the membrane bilayer. These results revealed a large-scale unfolding between the C- and N-domains of CLIC1 as it interacts with the membrane. In the present study, FRET was used to probe lipid-induced structural changes arising in the vicinity of the putative transmembrane region of CLIC1 (residues 24-46) under oxidative conditions. Intramolecular FRET distances are consistent with the model in which the N-terminal domain inserts into the bilayer as an extended α-helix. Further, intermolecular FRET was performed between fluorescently labeled CLIC1 monomers within membranes. The intermolecular FRET shows that CLIC1 forms oligomers upon oxidation in the presence of the membranes. Fitting the data to symmetric oligomer models of the CLIC1 transmembrane form indicates that the structure is large and most consistent with a model comprising approximately six to eight subunits.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/metabolismo , Algoritmos , Canais de Cloreto/genética , Colesterol/química , Colesterol/metabolismo , Cisteína , Dimerização , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química
20.
J Biol Chem ; 285(18): 13550-60, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20181955

RESUMO

In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Cisteína Proteases/química , Peptídeo Hidrolases/química , Serpinas/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Mutação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Estrutura Quaternária de Proteína , Plântula/química , Plântula/genética , Plântula/metabolismo , Serpinas/genética , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa