RESUMO
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
Assuntos
Estudo de Associação Genômica Ampla , Fígado , Locos de Características Quantitativas , Humanos , Alelos , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Fígado/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.
Assuntos
Processamento Alternativo , Fatores de Risco Cardiometabólico , Regulação da Expressão Gênica , Locos de Características Quantitativas , Característica Quantitativa Herdável , Gordura Subcutânea/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Biologia Computacional/métodos , Éxons , Finlândia , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores X do Fígado/genética , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Anotação de Sequência Molecular , Fenótipo , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNARESUMO
Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.
Assuntos
Cromatina/metabolismo , Fígado/metabolismo , Locos de Características Quantitativas , Motivos de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
Chromatin accessibility and gene expression in relevant cell contexts can guide identification of regulatory elements and mechanisms at genome-wide association study (GWAS) loci. To identify regulatory elements that display differential activity across adipocyte differentiation, we performed ATAC-seq and RNA-seq in a human cell model of preadipocytes and adipocytes at days 4 and 14 of differentiation. For comparison, we created a consensus map of ATAC-seq peaks in 11 human subcutaneous adipose tissue samples. We identified 58,387 context-dependent chromatin accessibility peaks and 3,090 context-dependent genes between all timepoint comparisons (log2 fold change>1, FDR<5%) with 15,919 adipocyte- and 18,244 preadipocyte-dependent peaks. Adipocyte-dependent peaks showed increased overlap (60.1%) with Roadmap Epigenomics adipocyte nuclei enhancers compared to preadipocyte-dependent peaks (11.5%). We linked context-dependent peaks to genes based on adipocyte promoter capture Hi-C data, overlap with adipose eQTL variants, and context-dependent gene expression. Of 16,167 context-dependent peaks linked to a gene, 5,145 were linked by two or more strategies to 1,670 genes. Among GWAS loci for cardiometabolic traits, adipocyte-dependent peaks, but not preadipocyte-dependent peaks, showed significant enrichment (LD score regression P<0.005) for waist-to-hip ratio and modest enrichment (P < 0.05) for HDL-cholesterol. We identified 659 peaks linked to 503 genes by two or more approaches and overlapping a GWAS signal, suggesting a regulatory mechanism at these loci. To identify variants that may alter chromatin accessibility between timepoints, we identified 582 variants in 454 context-dependent peaks that demonstrated allelic imbalance in accessibility (FDR<5%), of which 55 peaks also overlapped GWAS variants. At one GWAS locus for palmitoleic acid, rs603424 was located in an adipocyte-dependent peak linked to SCD and exhibited allelic differences in transcriptional activity in adipocytes (P = 0.003) but not preadipocytes (P = 0.09). These results demonstrate that context-dependent peaks and genes can guide discovery of regulatory variants at GWAS loci and aid identification of regulatory mechanisms.
Assuntos
Diferenciação Celular/genética , Cromatina/genética , Expressão Gênica/genética , Locos de Características Quantitativas/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Alelos , Desequilíbrio Alélico/genética , Sítios de Ligação/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Epigenômica/métodos , Técnicas Genéticas , Estudo de Associação Genômica Ampla/métodos , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genéticaRESUMO
Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.
Assuntos
Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Alelos , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Frequência do Gene/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Síndrome Metabólica/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.
Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Expressão Gênica , Obesidade/genética , Alelos , Índice de Massa Corporal , Finlândia , Estudo de Associação Genômica Ampla , Humanos , Masculino , Locos de Características Quantitativas , Relação Cintura-QuadrilRESUMO
Genome-wide association studies (GWASs) have identified hundreds of risk loci for liver disease and lipid-related metabolic traits, although identifying their target genes and molecular mechanisms remains challenging. We predicted target genes at GWAS signals by integrating them with molecular quantitative trait loci for liver gene expression (eQTL) and liver chromatin accessibility QTL (caQTL). We predicted specific regulatory caQTL variants at four GWAS signals located near EFHD1, LITAF, ZNF329, and GPR180. Using transcriptional reporter assays, we determined that caQTL variants rs13395911, rs11644920, rs34003091, and rs9556404 exhibit allelic differences in regulatory activity. We also performed a protein binding assay for rs13395911 and found that FOXA2 differentially interacts with the alleles of rs13395911. For variants rs13395911 and rs11644920 in putative enhancer regulatory elements, we used CRISPRi to demonstrate that repression of the enhancers altered the expression of the predicted target and/or nearby genes. Repression of the element at rs13395911 reduced the expression of EFHD1, and repression of the element at rs11644920 reduced the expression of LITAF, SNN, and TXNDC11. Finally, we showed that EFHD1 is a metabolically active gene in HepG2 cells. Together, these results provide key steps to connect genetic variants with cellular mechanisms and help elucidate the causes of liver disease.
Assuntos
Estudo de Associação Genômica Ampla , Hepatopatias , Humanos , Sequências Reguladoras de Ácido Nucleico , Lipídeos , Proteínas de TransporteRESUMO
Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.
RESUMO
Identifying the regulatory mechanisms of genome-wide association study (GWAS) loci affecting adipose tissue has been restricted due to limited characterization of adipose transcriptional regulatory elements. We profiled chromatin accessibility in three frozen human subcutaneous adipose tissue needle biopsies and preadipocytes and adipocytes from the Simpson Golabi-Behmel Syndrome (SGBS) cell strain using an assay for transposase-accessible chromatin (ATAC-seq). We identified 68,571 representative accessible chromatin regions (peaks) across adipose tissue samples (FDR < 5%). GWAS loci for eight cardiometabolic traits were enriched in these peaks (P < 0.005), with the strongest enrichment for waist-hip ratio. Of 110 recently described cardiometabolic GWAS loci colocalized with adipose tissue eQTLs, 59 loci had one or more variants overlapping an adipose tissue peak. Annotated variants at the SNX10 waist-hip ratio locus and the ATP2A1-SH2B1 body mass index locus showed allelic differences in regulatory assays. These adipose tissue accessible chromatin regions elucidate genetic variants that may alter adipose tissue function to impact cardiometabolic traits.