Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 47(12): 2080-2089, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28776644

RESUMO

Endotoxin tolerance assures proper regulation of the TLR4 signaling pathway and avoids uncontrolled inflammation, limiting tissue damage and endotoxin shock development. Though underlying molecular mechanisms are still undefined, evidence indicates the involvement of microRNAs, which represent a new layer of regulation of inflammatory pathways. Here, we report that LPS and other inflammatory stimuli repress miR-511-5p expression in human monocytes, while anti-inflammatory stimuli, such as TGF-ß and glucocorticoids, have the opposite effect. MiR-511-5p levels selectively influenced cell activation when endotoxin was used, while biological activity of other TLR agonists was unaffected. Consistent with this, TLR4 was validated as the miR-511-5p direct target responsible for glucocorticoids- and TGF-ß-mediated inhibition of pro-inflammatory cytokines production observed in endotoxin tolerant monocytes. MiR-511-5p thus acts as an intracellular mediator of glucocorticoids and TGF-ß for the induction of endotoxin tolerance in human monocytes.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Glucocorticoides/farmacologia , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Linhagem Celular Tumoral , Células Cultivadas , Dexametasona/farmacologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/farmacologia
2.
Proc Natl Acad Sci U S A ; 110(28): 11499-504, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798430

RESUMO

Toll-like receptors (TLRs) play key roles in detecting pathogens and initiating inflammatory responses that, subsequently, prime specific adaptive responses. Several mechanisms control TLR activity to avoid excessive inflammation and consequent immunopathology, including the anti-inflammatory cytokine IL-10. Recently, several TLR-responsive microRNAs (miRs) have also been proposed as potential regulators of this signaling pathway, but their functional role during the inflammatory response still is incompletely understood. In this study, we report that, after LPS engagement, monocytes up-regulate miR-146b via an IL-10-mediated STAT3-dependent loop. We show evidence that miR-146b modulates the TLR4 signaling pathway by direct targeting of multiple elements, including the LPS receptor TLR4 and the key adaptor/signaling proteins myeloid differentiation primary response (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6). Furthermore, we demonstrate that the enforced expression of miR-146b in human monocytes led to a significant reduction in the LPS-dependent production of several proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-8, CCL3, CCL2, CCL7, and CXCL10. Our results thus identify miR-146b as an IL-10-responsive miR with an anti-inflammatory activity based on multiple targeting of components of the TLR4 pathway in monocytes and candidate miR-146b as a molecular effector of the IL-10 anti-inflammatory activity.


Assuntos
Interleucina-10/fisiologia , MicroRNAs/fisiologia , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Citocinas/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo
3.
Mediators Inflamm ; 2015: 145305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451077

RESUMO

A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFß priming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFß signaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.


Assuntos
Endotoxinas/farmacologia , MicroRNAs/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Interleucina-10/farmacologia , MicroRNAs/genética , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator de Crescimento Transformador beta/farmacologia
4.
Proc Natl Acad Sci U S A ; 109(45): E3101-10, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23071313

RESUMO

IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses.


Assuntos
Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/biossíntese , Interleucina-6/biossíntese , MicroRNAs/genética , Monócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas I-kappa B , Interleucina-10/farmacologia , Subunidade p40 da Interleucina-12/genética , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Monócitos/efeitos dos fármacos , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sepse/genética , Sepse/imunologia , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Int J Mol Sci ; 14(9): 17347-77, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23975170

RESUMO

Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.


Assuntos
Imunidade Adaptativa/fisiologia , RNA não Traduzido/genética , Imunidade Adaptativa/genética , Animais , Epigênese Genética/genética , Humanos
6.
Blood ; 115(2): 265-73, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19965651

RESUMO

Activation of the T cell-mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte-mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


Assuntos
Imunidade Adaptativa/fisiologia , Regulação da Expressão Gênica/fisiologia , Interleucina-2/biossíntese , Ativação Linfocitária/fisiologia , MicroRNAs/metabolismo , Linfócitos T/metabolismo , Morte Celular/fisiologia , Proteína de Domínio de Morte Associada a Fas/imunologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Interleucina-2/imunologia , Células Jurkat , MicroRNAs/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/fisiologia
7.
Annu Rev Pathol ; 15: 123-147, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31530089

RESUMO

Macrophages are a diverse set of cells present in all body compartments. This diversity is imprinted by their ontogenetic origin (embryonal versus adult bone marrow-derived cells); the organ context; by their activation or deactivation by various signals in the contexts of microbial invasion, tissue damage, and metabolic derangement; and by polarization of adaptive T cell responses. Classic adaptive responses of macrophages include tolerance, priming, and a wide spectrum of activation states, including M1, M2, or M2-like. Moreover, macrophages can retain long-term imprinting of microbial encounters (trained innate immunity). Single-cell analysis of mononuclear phagocytes in health and disease has added a new dimension to our understanding of the diversity of macrophage differentiation and activation. Epigenetic landscapes, transcription factors, and microRNA networks underlie the adaptability of macrophages to different environmental cues. Macrophage plasticity, an essential component of chronic inflammation, and its involvement in diverse human diseases, most notably cancer, is discussed here as a paradigm.


Assuntos
Plasticidade Celular/fisiologia , Macrófagos/fisiologia , Animais , Humanos , Imunidade Inata/fisiologia , Inflamação/etiologia , Inflamação/imunologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
8.
Front Immunol ; 10: 799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057539

RESUMO

The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , MicroRNAs/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/patologia
9.
Cells ; 7(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419779

RESUMO

Innate immune cells form an integrative component of the tumor microenvironment (TME), which can control or prevent tumor initiation and progression, due to the simultaneous processing of both anti- and pro-growth signals. This decision-making process is a consequence of gene expression changes, which are in part dependent on post-transcriptional regulatory mechanisms. In this context, microRNAs have been shown to regulate both recruitment and activation of specific tumor-associated immune cells in the TME. This review aims to describe the most important microRNAs that target cancer-related innate immune pathways. The role of exosomal microRNAs in tumor progression and microRNA-based therapeutic strategies are also discussed.

10.
Front Immunol ; 9: 2037, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245693

RESUMO

An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop. We demonstrated that microRNAs generated by this cluster perform a pervasive regulation of the TLR signaling pathway by direct targeting receptors (TLR4, CD14), signaling molecules (IRAK1), and effector cytokines (TNFα, IL-6, CCL3, CCL7, CXCL8). Modulation of miR-125a~99b~let-7e cluster influenced the production of proinflammatory cytokines in response to LPS and the IL-10-mediated tolerance to LPS, thus identifying this gene as a previously unrecognized major regulatory element of the inflammatory response and endotoxin tolerance.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Família Multigênica , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Citocinas/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Tolerância Imunológica , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Interferência de RNA , Receptor 4 Toll-Like/genética
11.
Elife ; 62017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28464980

RESUMO

The Hippo-YAP pathway is a central regulator of cell contact inhibition, proliferation and death. There are conflicting reports regarding the role of Angiomotin (Amot) in regulating this pathway. While some studies suggest a YAP-inhibitory function other studies indicate Amot is required for YAP activity. Here, we describe an Amot-dependent complex comprised of Amot, YAP and Merlin. The phosphorylation of Amot at Serine 176 shifts localization of this complex to the plasma membrane, where it associates with the tight-junction proteins Pals1/PATJ and E-cadherin. Conversely, hypophosphorylated Amot shifts localization of the complex to the nucleus, where it facilitates the association of YAP and TEAD, induces transcriptional activation of YAP target genes and promotes YAP-dependent cell proliferation. We propose that phosphorylation of AmotS176 is a critical post-translational modification that suppresses YAP's ability to promote cell proliferation and tumorigenesis by altering the subcellular localization of an essential YAP co-factor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Angiomotinas , Membrana Celular/química , Núcleo Celular/química , Células HEK293 , Células Hep G2 , Humanos , Proteínas dos Microfilamentos , Fosforilação , Ligação Proteica , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa